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Investigations of Pharmacokinetic Challenges in Premature Infants Investigations of Pharmacokinetic Challenges in Premature Infants 

Abstract Abstract 
Premature infants (gestational age less than 37 weeks) are considered a vulnerable patient population 
due to their immaturity at birth. Currently, off-label prescribing is common in younger pediatric 
populations, especially in premature neonates and infants, which is a primary group receiving intensive 
care. Unique pharmacokinetic (PK) challenges—such as limited blood volume and frequency of blood 
sample collections, rapid growth and continuous developmental changes, complexity of pediatric studies 
as well as scientific, practical, and ethical concerns— lead to the current lack of PK information and 
empirical dosing in premature neonates and infants. In this research, several approaches were 
investigated to overcome these PK challenges. We first developed and validated an accurate and 
sensitive LC-MS/MS method that can simultaneously quantitate multiple drugs frequently used in 
pediatric pharmacotherapy using a small volume of plasma. Additionally, a modeling and simulation 
(M&S) approach was explored in the theophylline population pharmacokinetic (PopPK) study in order to 
get an appropriate study design with the optimized sample size. Finally, PopPK of caffeine was 
investigated in premature infants using clinical data. Optimized dosing regimens were developed based 
on the PopPK model and dose-finding simulation study. 

Due to the limitation in sample volume, an assay that can simultaneously determine multiple drugs allows 
for gaining maximal information from PK studies while minimizing the burden of blood collection in 
pediatric patients. Acetaminophen, caffeine, phenytoin, ranitidine, and theophylline are widely used in the 
pharmacotherapy of premature and term neonates, but only limited information is currently available on 
the PK of these medications in premature neonates. An accurate, sensitive and reliable LC-MS/MS assay 
was developed and validated using 50 µL human plasma specimens to simultaneously quantitate these 
five drugs with the mean accuracy ranging from 87.5 to 115.0%. The intra-day and inter-day precisions 
ranges from 2.8% to 11.8%, 4.5% to 13.5% respectively. This assay quantifies a range of 12.2 to 25,000 
ng/mL for acetaminophen, phenytoin, and ranitidine, a range of 24.4 to 25,000 ng/mL for theophylline, and 
a range of 48.8 to 25,000 ng/mL for caffeine. These ranges cover each drug’s therapeutically used 
concentrations in the neonatal group. No significant interference effects from hemolysis, lipemia and 
hyperbilirubinemia were noted when these factors existed separately or were combined. Additionally, no 
significant matrix effect was observed for the developed bioanalytical assay. 

We then evaluated the impact of sample size on the robustness of PopPK parameter estimates in 
observational studies in premature neonates using a simulation approach with theophylline as the model 
drug. Simulated datasets for each sample size (9–200 subjects per study) with a mixed and unbalanced 
sampling design were first generated with the incorporation of changes in birth weight, body weight, and 
postnatal age (PNA) in premature neonates. The median PopPK parameters for theophylline estimated 
from the simulated datasets were generally in close agreement with those of the originating model across 
all tested sample sizes. While the accuracy, precision and power to parameter estimation benefit from 
increases in the number of subjects included in the study, an observational study designs with < 20 
premature neonates and unbalanced sampling are inadequate to allow for the precise estimation of 
theophylline PopPK parameters. Furthermore, the results indicate that the impact of sample size on the 
power of the study was deeply influenced by the parameter of interest and the selected precision level. To 
detect all three covariate effects studied in this research with a power > 0.8, a sample size of 20, 40 and 
60 subjects is required to reach the significant level of P = 0.05, P = 0.01 and P = 0.001, respectively. The 
application of PopPK modeling and simulation provides a useful approach to estimate the number of 
subjects needed to confidently detect the potential covariate effects on PK parameters under a specific 
sampling strategy—randomized and unbalanced blood sampling schedules, which is consistent with 
actual pediatric clinical settings. 
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Apnea of prematurity (AOP) is one of the major concerns in premature neonates. Caffeine is currently the 
first-line pharmacotherapy frequently used for the treatment of AOP. A PopPK model of caffeine was 
developed in premature neonates, and potential sources of variability of PK behavior for caffeine were 
also identified. A one-compartment model was chosen to describe the PK characteristics of caffeine in 
premature infants, covering a gestational range of 23 to 31 weeks with an age of up to 116 days. Body 
weight (WT), postconceptional age (PCA) and a low gestational age (GA) of < 25 weeks were found to be 
important predictors explaining the between-subject variability of caffeine PK in premature infants 
receiving caffeine treatment. The typical patient in the studied premature neonate population, i.e., a 
patient with WT of 1.5 kg, PCA of 32 weeks and with a GA > 25 weeks, is estimated to have a CL of 0.0164 
L/hr and a V of 0.94 L. We also investigated the application of this PK knowledge to facilitate the 
development of optimal dosing regimens further through simulation, particularly to correlate steady state 
concentrations with response at the different dosing regimens for various age/body size groups using 
trial simulation. A dosing interval of 24 hours is shown to be successful with respect to the proposed 
target concentrations in all simulated groups. With the proposed dosing regimens, the predetermined 
target was attained and the simulated median trough plasma concentrations were between 8 and 20 mg/
L throughout the treatment period. The dose-finding simulations based on the developed PopPK model 
may provide more benefit while allowing the clinicians to compare various dosing regimens and bridge 
the plasma caffeine levels with responses at different PCAs and different WTs. 

In summary, different approaches were investigated in this study to overcome the unique PK challenges in 
the premature neonates and infants. A full model-based simulation approach was developed to determine 
an optimal sample size for PopPK study in premature neonates with the consideration of changes in birth 
weight, body weight, and PNA. In addition, a PopPK model was developed for caffeine in premature 
infants and optimal dosing regimens were proposed to reach the therapeutic target concentrations rapidly 
based on the PopPK model. Together with the developed LC-MS/MS assay, which is highly sensitive, 
accurate and reliable, population-based modeling and simulation are highly useful in supporting clinical 
PK studies in premature neonates and infants. 
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ABSTRACT 
 
 

Premature infants (gestational age less than 37 weeks) are considered a vulnerable 
patient population due to their immaturity at birth. Currently, off-label prescribing is 
common in younger pediatric populations, especially in premature neonates and infants, 
which is a primary group receiving intensive care. Unique pharmacokinetic (PK) 
challenges—such as limited blood volume and frequency of blood sample collections, 
rapid growth and continuous developmental changes, complexity of pediatric studies as 
well as scientific, practical, and ethical concerns—lead to the current lack of PK 
information and empirical dosing in premature neonates and infants. In this research, 
several approaches were investigated to overcome these PK challenges. We first 
developed and validated an accurate and sensitive LC-MS/MS method that can 
simultaneously quantitate multiple drugs frequently used in pediatric pharmacotherapy 
using a small volume of plasma. Additionally, a modeling and simulation (M&S) 
approach was explored in the theophylline population pharmacokinetic (PopPK) study in 
order to get an appropriate study design with the optimized sample size. Finally, PopPK 
of caffeine was investigated in premature infants using clinical data. Optimized dosing 
regimens were developed based on the PopPK model and dose-finding simulation study. 
 
 Due to the limitation in sample volume, an assay that can simultaneously 
determine multiple drugs allows for gaining maximal information from PK studies while 
minimizing the burden of blood collection in pediatric patients. Acetaminophen, caffeine, 
phenytoin, ranitidine, and theophylline are widely used in the pharmacotherapy of 
premature and term neonates, but only limited information is currently available on the 
PK of these medications in premature neonates. An accurate, sensitive and reliable 
LC-MS/MS assay was developed and validated using 50 µL human plasma specimens to 
simultaneously quantitate these five drugs with the mean accuracy ranging from 87.5 to 
115.0%. The intra-day and inter-day precisions ranges from 2.8% to 11.8%, 4.5% to 
13.5% respectively. This assay quantifies a range of 12.2 to 25,000 ng/mL for 
acetaminophen, phenytoin, and ranitidine, a range of 24.4 to 25,000 ng/mL for 
theophylline, and a range of 48.8 to 25,000 ng/mL for caffeine. These ranges cover each 
drug’s therapeutically used concentrations in the neonatal group. No significant 
interference effects from hemolysis, lipemia and hyperbilirubinemia were noted when 
these factors existed separately or were combined. Additionally, no significant matrix 
effect was observed for the developed bioanalytical assay. 
 
 We then evaluated the impact of sample size on the robustness of PopPK 
parameter estimates in observational studies in premature neonates using a simulation 
approach with theophylline as the model drug. Simulated datasets for each sample size 
(9-200 subjects per study) with a mixed and unbalanced sampling design were first 
generated with the incorporation of changes in birth weight, body weight, and postnatal 
age (PNA) in premature neonates. The median PopPK parameters for theophylline 
estimated from the simulated datasets were generally in close agreement with those of the 
originating model across all tested sample sizes. While the accuracy, precision and power 
to parameter estimation benefit from increases in the number of subjects included in the 
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study, our simulation showed observational study designs with < 20 premature neonates 
and unbalanced sampling are inadequate to allow for the precise estimation of 
theophylline PopPK parameters. Furthermore, the results indicate that the impact of 
sample size on the power of the study was deeply influenced by the parameter of interest 
and the selected precision level. To detect all three covariate effects studied in this 
research with a power > 0.8, a sample size of 20, 40 and 60 subjects is required to reach 
the significance level of P = 0.05, P = 0.01 and P = 0.001, respectively. The application 
of PopPK modeling and simulation provides a useful approach to estimate the number of 
subjects needed to confidently detect the potential covariate effects on PK parameters 
under a specific sampling strategy—randomized and unbalanced blood sampling 
schedules, which is consistent with the actual pediatric clinical settings. 
 
 Apnea of prematurity (AOP) is one of the major concerns in premature neonates. 
Caffeine is currently the first-line pharmacotherapy frequently used for the treatment of 
AOP. A PopPK model of caffeine was developed in AOP patients, and the potential 
sources of variability of PK behavior for caffeine were also identified. A one-
compartment model was chosen to describe the PK characteristics of caffeine in 
premature infants, covering a gestational range of 23 to 31 weeks with an age of up to 
116 days. Body weight (WT), postconceptional age (PCA) and a low gestational age 
(GA) of < 25 weeks were found to be important predictors explaining the between-
subject variability of caffeine PK in premature infants. The typical patient in the studied 
premature neonate population, i.e., a patient with WT of 1.5 kg, PCA of 32 weeks and 
with a GA > 25 weeks, is estimated to have a clearance of 0.0164 L/hr and a volume of 
distribution of 0.94 L. We further investigated the application of this PK knowledge to 
facilitate the development of optimal dosing regimens through simulations, particularly to 
correlate steady state concentrations with response at the different dosing regimens for 
various age/body size groups using trial simulation. A dosing interval of 24 hours is 
shown to be successful with respect to the proposed target concentrations in all simulated 
groups. With the proposed dosing regimens, the predetermined target was attained and 
the simulated median trough plasma concentrations were between 8 and 20 mg/L 
throughout the treatment period. The age-specific dose-finding simulations based on the 
developed PopPK model may provide more therapeutic benefit while allowing the 
clinicians to compare various dosing regimens and bridge the plasma caffeine levels with 
responses at different PCAs and different WTs.  
 
 In summary, different approaches were investigated in this study to overcome the 
unique PK challenges in premature neonates and infants. A full model-based simulation 
approach was developed to determine an optimal sample size for PopPK study in 
premature neonates with the consideration of changes in birth weight, body weight, and 
PNA. In addition, a PopPK model was developed for caffeine in premature infants and 
optimal dosing regimens were proposed to reach the therapeutic target rapidly based on 
the PopPK model. Together with the developed LC-MS/MS assay, which is sensitive, 
accurate and reliable, population-based modeling and simulation are highly useful in 
supporting clinical PK studies in premature neonates and infants.  
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CHAPTER 1.    INTRODUCTION 
 
 

Pediatric Populations and Off-label Medications 
 
 Federal legislation and the U.S. Food and Drug Administration (FDA) regulations 
require that drugs be tested for safety and efficacy in the intended patient population 
before they are approved for marketing. Prescribing of drugs without appropriate testing 
and FDA approval for a specific age or diagnosis is thus considered “off-label” or 
unlicensed use. While more than 200 new drugs have been approved by the FDA over the 
last decade, the development and evaluation of new medicines in pediatric populations 
remains limited and particularly scarce in premature and term neonates [1]. The paucity 
of evidence-based medicines for children is still an extensive, long-standing problem 
across almost all therapeutic categories including infection, respiratory diseases, central 
nervous system disorders and gastrointestinal diseases, as well as pain control 
(Figure 1-1) [2-9]. For example, it has been reported that up to 62% of pediatric 
outpatient visits involve prescribing off-label or unlicensed medications [3]. Among this 
62% percent, off-label prescribing was observed in 96% of the pediatric patients with 
cardiovascular and renal diseases, over 80% of those requiring pain management 
therapies or diagnosed with gastrointestinal diseases and 67% of patients with pulmonary 
or dermatologic diseases. Similarly, another study reported that 70% of the medications 
in pediatric intensive care and 90% of the medications in neonatal intensive care were 
given in an off-label manner [10].  
 
 Pediatric populations are defined as neonates (from birth to 1 month), infants 
(from 1 month to 2 years), children (from 2 to 12 years), and adolescents (from 12 to 
< 16 years) in clinical studies. based on the United States Food and Drug Administration 
(FDA) guidance [11]. Within pediatric populations, premature neonates whose 
gestational age (GA) is less than 37 weeks are considered the youngest and most 
vulnerable patient population to adverse drug reactions due to their immaturity at birth. 
Premature neonates in the intensive care unit have the highest use of off-label 
medications of any hospitalized patient population. Generally, off-label or empirical drug 
dosing is not considered unethical or illegal and may in fact be beneficial to the patients. 
However, given the fact that off-label dosing is usually carried out based upon clinicians’ 
experiences, limited published literature and extrapolations from adult dosing regimens 
[12], it has been associated with adverse events and raises concerns regarding proper dose 
selection as well as safety and efficacy [3, 13, 14]. For example, immature liver enzyme 
activity and low renal excretion function were observed in premature and term neonates 
compared to adults and older children [15], and these findings may indicate decreased 
clearance and therefore larger exposure to drugs. A classic example is the “grey baby 
syndrome” with the administration of chloramphenicol in neonates [16]. The age-related 
incidence of gray baby syndrome was most found in newborns less than 9 days old [16, 
17]. The reduced capacity of the liver and kidney to detoxify and eliminate 
chloramphenicol explains the development of toxic effects in neonates, especially in 
premature neonates given body-weight scaled chloramphenicol doses [18]. Another 
possible reason is that children may show development-associated toxicity that adults do   
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Figure 1-1. Percentage of off-label drug use in major drug category in pediatric 
population  
 
Figure shows most often prescribed off-label drug categories in pediatrics.  
 
Source: Figure based on data from Bazzano, A.T., et al., Off-label prescribing to children 
in the United States outpatient setting. Acad Pediatr, 2009. 9(2): p. 81-8. 
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not experience. For example, tetracycline-induced discolorations of teeth only affect 
developing enamel during the period of calcification [19]. Therefore tetracycline is today 
no longer prescribed for young children and pregnant women. These two examples 
illustrate pharmacokinetic (PK) and pharmacodynamic (PD) differences between adults 
and young children resulting in very disparate responses to drug therapy. However, the 
differences in how PK and/ or PD interact in a fast growing child have not been 
thoroughly investigated. In such cases, linear predictions from adult doses (e.g., dose 
extrapolation on the basis of linear scaling per body surface area [BSA] or per body 
weight [WT]) are not always suitable solutions.  
 
  The American Academy of Pediatrics Committee on Drugs has stated: “There is 
a moral imperative to formally study drugs in children so that they can enjoy equal access 
to existing as well as new therapeutic agents” [20]. To correct the situation of off-label 
dosing, a series of laws and regulations have been enacted regarding the integrity of the 
research and development of therapies for pediatric patients. Recent legislative incentives 
and regulations for pediatric drug development are summarized in Table 1-1.  
 
 The Pediatric Labeling Rule issued by the FDA in 1994 encourages sponsors to 
review existing data and provide the appropriate labeling information for pediatric use if 
the course of the disease and the expected drug responses are similar between adult and 
pediatric populations. However, only a small increase in the number of applications with 
supplemental pediatric labeling information was noticed following the Pediatric Labeling 
Rule [21]. The FDA Modernization Act (FDAMA) issued in 1997 included financial 
incentives for pharmaceutical companies to conduct pediatric studies. This act offered an 
additional 6 months of marketing exclusivity for a drug tested in pediatric studies and 
also led to the development of an annual Pediatric Priority List by the FDA, which 
consists of approved drugs that need new pediatric use information. In 1998, the FDA 
published the Pediatric Rule, which required that any new drug application contain the 
data from pediatric testing unless this drug was not going to be used in a substantial 
number of pediatric patients. Under the Pediatric Rule, the FDA also required drug 
companies to perform pediatric studies for a marketed drug when the drug was used or 
intended to be used in pediatric patients but lacked labeling information where the drug 
might cause significant risks. The change of an active ingredient, formulation, dosage or 
route of administration of a drug may trigger this rule [21]. However, the Pediatric Rule 
 
 
Table 1-1. Summary of regulatory incentives and regulations for drug 
development in pediatric populations 
 

Year Regulatory incentives or regulations 
1994 Pediatric Labeling Rule 
1997 FDA Modernization Act (FDAMA) 
1998 Pediatric Rule 
2002 Best Pharmaceuticals for Children Act (BPCA) 
2003 Pediatric Research Equity Act (PREA) 
2007 FDA Amendments Act 
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was overturned by a federal court in 2002. More recently, the Best Pharmaceuticals for 
Children Act (BPCA) took effect in 2002 and aimed to improve pediatric drug 
development as well as to encourage testing of new drugs and off-patent drugs for use in 
pediatric populations. The Pediatric Research Equity Act (PREA) was signed into law in 
2003; it authorizes the FDA to require clinical studies in pediatric populations for new 
drugs and biological products targeting pediatric patients. To reauthorize the BPCA and 
PREA, the FDA Amendments Act was enacted in 2007; it extended the 6-month 
additional market exclusivity for patented drugs when clinical studies are being 
conducted in pediatric populations.  
 
 

Role of Pharmacokinetics and Pharmacodynamics in Pediatric Optimal Dosing  
 
 In the previous section, a couple of examples explicating different drug responses 
derived from large variability in pharmacokinetics and pharmacodynamics between 
adults and children were mentioned. These differences also exist within the gestational 
age variance of premature infants. Premature infants are not a homogenous group; their 
maturational process after birth may follow various patterns. Developmental changes in 
body size and function are rapid and continuous. A variety of changes in physiological 
and biochemical processes resulting in age-dependent differences in drug disposition 
(i.e., absorption, distribution, metabolism and excretion) and drug response also exist in 
these infants.  
 
 
PKPD and optimal dose selection 
 
 Pharmacokinetics describes the effect of the body on drugs, including the process 
of absorption, distribution, metabolism and excretion (ADME) of a drug over a certain 
period of time. Pharmacodynamics describes the relationship between drug 
concentrations and the magnitude of drug effect at the assumed site of drug action. In 
other words, PK and PD may be simply defined as ‘what the body does to the drug’ 
and ‘what the drug does to the body’ [22]. The PK and PD characteristics may explain 
the clinical responses of certain dosing regimens of a drug independently or their 
combined effect—i.e., dose–exposure–response relationship can play an important role in 
deciding the optimal dosing regimen with maximal efficacy and minimum undesirable 
drug effects. The exposure-response relationship for pediatric clinical pharmacology may 
not be the same as for adults. The understanding of the PK and/or PD relationship can 
provide a rational and scientifically based framework for the determination of the optimal 
dosing regimen in pediatric pharmacotherapy. When a similar concentration-response 
relationship can be assumed between pediatrics and adults and when PK is the major 
factor contributing to differences in drug responses, optimal dose selection can be 
determined based on the PK characteristics of the drug. One example is topiramate, 
which is a recently approved drug for the monotherapy of seizures in pediatric patients 
2-10 years old [23]. Topiramate has been previously approved as monotherapy in patients 
> 10 years of age or as adjunctive therapy for pediatric patients 2-10 years of age. In this 
study, a similar exposure-response relationship was proven between pediatric patients 
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and adults through PK/PD modeling and simulation. Therefore, the dosing regimen for 
pediatric patients 2-10 years old was derived based on PopPK modeling and simulation 
without additional clinical trials. Meanwhile, dose optimization also may be determined 
by the drug’s PK and PD properties simultaneously when both PK and PD characteristics 
are changing. For example, dosing recommendations for sotalol have been derived when 
both PK and PD data were considered [24]. In this study, different concentration-QT 
prolongation relationships were revealed through population PK/PD analysis between 
neonates and older patient groups. Based on the findings, both solatol’s systemic 
exposures and PD responses were included in the development of sotalol dosage 
recommendations in different pediatric age groups to achieve maximum efficacy and 
minimum safety concerns. 
 
 
Age-dependent changes in PKPD 
 
Absorption 
 
 Absorption of oral drugs can be affected by gastric acidity, gastric motility and 
emptying time, as well as the length of the gastrointestinal tract. Gastric acidity, which is 
decreased in neonates and infants, can enhance the absorption of acid labile drugs, such 
as benzylpenicillin and ampicillin, and decrease the absorption of acidic drugs, such as 
phenobarbital and phenytoin [25]. Gastric pH then changes gradually during maturation 
and slowly reaches adult levels approximately 2 years after birth. In addition, gastric 
emptying is much slower in premature infants compared to term infants and older 
children [26]. Thus bioavailability of oral drugs in premature infants can be very different 
from that in term infants and older children.  
 
Distribution 
 
 Drug distribution is also different in neonates and infants and is greatly influenced 
by total body water and protein binding. Total body water is approximately 85% of the 
body weight in premature neonates and 70-75% in term neonates compared with 50-55% 
in adults. As a result, a larger dose (per body weight) is required for polar compounds to 
achieve therapeutic concentrations in neonates [25]. Additionally, volume of distribution 
can be affected by protein binding. Due to the lower levels, protein binding of drugs is 
generally reduced in neonates, especially premature neonates, as compared to that in 
older children and adults. Reduced protein binding also leads to a higher fraction of 
unbound plasma drug concentrations, which results in a larger volume of distribution for 
medications used in newborns. For example, it has been reported that with administration 
of theophylline a lower protein binding and a larger volume of distribution were observed 
in preterm neonates than in older children and adults [27].  
 
Metabolism 
 
 Drug metabolism defines the biotransformation of endogenous and exogenous 
compounds in the body. It may occur in the liver, kidneys, intestines, lungs and blood 
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cells, but hepatic metabolism is the primary pathway for most drugs’ metabolism. 
Hepatic metabolism is usually catalyzed in the liver by the cytochrome P450 (CYP) 
enzymes (Phase I reactions), and/or the Phase II enzymes, such as uridine diphosphate 
glucuronosyl transferase, sulfotransferase, methyltransferase, glutathione S-transferase 
and N-acetyltransferases. Metabolism generally enhances drug excretion by transforming 
xenobiotics and drugs into a more water-soluble form [28]. These metabolic pathways are 
generally underdeveloped at birth and change dramatically from birth to adulthood. The 
rates of maturation for metabolizing enzymes are much slower in premature neonates 
than in term neonates [25].  
 
 Although liver expression of major Phase I enzymes, such as the CYP1A, 
CYP2C, CYP2D, CYP2E and CYP3A subfamilies, are generally very low in neonates 
and reach adult levels within 2 years after birth, the age-dependent developmental 
trajectory might be different between different type of enzymes. For example, CYP3A4 is 
the most abundant isozyme in the CYP family in the adult liver and accounts for the 
metabolism of more than 30% of all drugs, while CYP3A7 is the predominant enzyme of 
the CYP3A family in the fetal liver [29, 30]. CYP3A7 activity remains maximal within 
one week after birth but then decreases to a very low level. Concurrently, CYP3A4 
enzyme activity increases after birth, reaching approximately 30-40% of adult levels by 
one month of age, and actually exceeds adult levels by two years of age [29, 31]. The 
CYP2C enzymes are an important subfamily of CYPs and are involved in the metabolism 
of ~20% of clinically used drugs in adults [32].  Of them, CYP2C9 and CYP2C19 are 
two predominant isozymes. CYP2C9 protein and activity levels are comparable to adult 
values at birth, while CYP2C19 enzyme activity is only 12 to 15% of adult values at birth 
and reaches adult levels after 10 years of age [33]. Very low levels of CYP2D6 protein 
can be detected in the fetal liver and are associated with the O-demethylation activity of 
dextromethorphan [34, 35]. CYP2D6 activity increases rapidly after birth and reaches 
approximately 30% of adult levels by the first month of life [34]. Adult levels of 
CYP2D6 enzyme activity may be reached by one year of age [36]. CYP1A2 enzyme 
activity is negligible at birth and remains very low until one to three months after birth. 
Its activity increases to approximately 50% of adult values by one year of age [37].  
 
 Phase II enzymes also contribute significantly to the elimination of many 
clinically used drugs. Though the information for the ontogeny of Phase II metabolizing 
enzymes is still limited, current literature indicates that developmental changes of many 
Phase II enzymes occur throughout infancy and usually exhibit isoform-specific 
maturation process [38]. Therefore, reduced ability to eliminate exogenous and 
endogenous compounds also may be observed in neonates and infants because of the low 
conjugation capacity of the Phase II enzymes.  
 
 As a result, drugs that are metabolized by the Phase I and Phase II enzymes may 
exhibit a low systemic clearance and prolonged elimination half-life in neonates; but a 
higher weight-corrected dose may also be needed during infant or children period when 
metabolizing enzyme activities reach adult levels due to nonlinear scaling requirements 
between children and adults. Although expression of some hepatic enzymes might appear 
to be associated with birth, both postconceptional and postnatal development can affect 
hepatic drug clearance in neonates. Postconceptional age is considered a more 
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physiologically appropriate factor to explain maturation-dependent drug metabolism, as it 
explains the maturation and developmental process of drug metabolic pathways both 
prior to and after birth [39]. 
 
 Xenobiotics and their metabolites can be excreted from cells by Phase III 
transporters, most of which belong to the ATP-binding cassette family (ABC) or the 
solute carrier transporter family. Phase III transporters are present in the cell membrane 
of many tissues, such as liver, intestine, kidney and brain, and can provide a barrier 
against xenobiotic entry or move various endogenous and exogenous compounds in and 
out of cells. For example, Phase III transporters are involved in the excretion of drugs and 
their metabolites into the bile for hepatic elimination and are essential components 
contributing to the overall hepatic clearance. 
 
 The ABC transporters are a superfamily of large membrane proteins that can 
actively transport a variety of compounds through membranes in an ATP-dependant 
manner [40], and human ABC transporters can be divided into seven subfamilies. Among 
these subfamilies, multidrug resistance P-glycoprotein (P-gp, coded by the 
MDR1/ABCB1 gene) and multidrug resistance protein 2 (MRP2, coded by ABCC2 gene) 
appear to be the most relevant transporters for the hepatobiliary elimination of 
xenobiotics in humans. P-gp exists in many major organs including liver, kidney, small 
intestine, and blood brain barrier and plays an important role in the disposition of a 
variety of hydrophobic and cationic drugs. MRP2 is highly expressed in the liver, 
intestine, and kidney and transports a range of drugs conjugated to glutathione, sulfate, or 
glucuronate into bile [40].  
 
 Although Phase III transporters may significantly influence drug absorption and 
elimination, the developmental changes of drug transporters remains largely unknown. 
For example, loperamide (a P-gp substrate)-induced respiratory depression due to central 
nervous toxicity has been reported in infants despite its apparent safety in adults [41, 42]. 
However, it is unclear whether or not this toxicity is caused by the lower expression of  
P-gp at the blood brain barrier in infants. Additionally, one recent study has reported that 
P-gp is expressed in a developmental and cell-specific manner in the human central 
nervous system [43]. Thus, it is possible that the expression pattern of P-gp at the blood 
brain barrier might affect the uptake or excretion of drugs in the central nervous system 
in neonates. Similarly, potential MRP2-related drug toxicity has been reported in 
pediatric populations [44-47]. Ceftriaxone, an antibiotic often used to treat lower 
respiratory infections or acute otitis media in the pediatric population, is partially 
eliminated unchanged into the bile through the MRP2 transporter. An increased risk of 
cholestasis has been reported in children receiving the administration of ceftriaxone, 
which may be caused by the lower expression of MRP2 in pediatric patients, thus leading 
to an accumulation of ceftriaxone in the hepatocytes. However, further investigations are 
still needed to confirm the underlying mechanism of this adverse drug reaction. 
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Excretion 
 
 Renal elimination mechanisms include glomerular filtration, active secretion and 
tubular reabsorption. The maturation of glomerular filtration differs between term and 
preterm infants and may affect the drug’s renal elimination. Glomerular filtration rates 
are only approximately 30% of adult function at birth and mature during infancy with an 
exponential function that asymptotically reaches adult values [39]. Adult levels are 
reached within 1 year of age for a full term infant [48]. Premature infants have a much 
smaller increase in glomerular filtration rate during the first 3 days after birth than term 
infants [49]. Various transporters such as ABC transporters, organic anion/cation 
transporters (OATs/OCTs) and the peptide co-transporter PEPT2, are involved in renal 
secretion and reabsorption [50]. However, little information is known about the 
maturation process of these transporters in the kidney. 
 
Developmental changes in pharmacodynamics 
 
 Both PK and PD processes contribute to the difference in the safety and efficacy 
of a drug between pediatric populations and adults. A decision tree for conducting 
pediatric studies was proposed by the FDA in 2003 [51]. The FDA guidance for bridging 
efficacy studies recommends the evaluation of disease progression, drug response and 
concentration-response relationship between adults and pediatric populations. Although 
currently there is little known regarding the developmental changes in PD responses, a 
number of studies have reported age-dependant changes in the concentration-response 
relationships of some drugs. For example, Tran et al. reported that the antisecretory effect 
following a single oral lansoprazole administration was increased in infants younger than 
6 months compared to that in older children and adults [52]. Similarly, age-related 
differences in PD responses have been reported for tacrolimus [53], cyclosporine [54], 
sotalol [24], rocuronium [55], and warfarin [56]. 
 
 These maturation processes in premature neonates and infants have significant 
impact on a drug’s dose-concentration relationship, which may lead to profound age-
dependent differences in PK and PD responses. Drugs, including newly developed and 
established ones, must be investigated in children to determine their safety and efficacy in 
corresponding age groups. However, only therapeutic studies or routine care studies are 
considered ethically acceptable research in children. New research approaches have been 
proposed to overcome those challenges. 
 
 

Challenges of Clinical Studies in Pediatric Patients 
 
 As mentioned earlier, the prevalence of off-label medications use in neonates and 
young infants is most likely due to the greater challenges in conducting clinical studies in 
this population as well as inadequate knowledge of developmental pharmacology [3, 4, 
57]. This situation is even worse for premature infants. Some unique challenges in 
clinical studies in this population are illustrated in Figure 1-2. In the United States the 
preterm birth rate has been on the rise for more than two decades, with a rate of 12.3% in   
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Figure 1-2. Illustration of unique challenges of clinical studies in premature 
neonates and infants  
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2008 [58]. Despite advances in neonatal care, premature neonates and infants remain a 
major group for morbidity and mortality in all infants. As this population expands, 
researchers are gaining more and more awareness for the need for rational and scientific-
based pharmacotherapy other than empirical-based dosing.  
 
 
Health problems in premature infants 
 
 Compared to term infants, premature infants face much higher rates of health 
issues after birth. Briefly, common problems include but are not limited to: 1. low birth 
weight, 2. feeding problems, 3. severe infections, and 4. immaturity of major organs or 
organ systems. For example, almost all newborn babies with body weight < 1000 g or 
with gestational age < 29 weeks have breathing problems to some extent due to 
underdeveloped lungs and a resulting insufficient oxygen supply. Special care is often 
needed to support their lives for weeks to months. Medical and ethical concerns highly 
restrict the performance of clinical research in this patient group. As a result, new drug 
testing usually excludes pediatric populations from therapeutic research for the 
establishment of evidence-based medicine, except for therapeutic studies or routine care 
studies. 
 
 
Limited sample volumes in pediatric studies 
 
 The volume and frequency of blood sample collection in infants and small 
children are usually very limited. While no consensus has been reached on the 
appropriate level of pediatric blood collection, various criteria have been proposed to 
minimize the volume of blood withdrawn in pediatric studies. For example, the Partners 
Human Research Committee (PHRC) recommended that no more than 3 mL/kg of blood 
may be drawn per 8-week period for research purposes in children [59]. The European 
Commission recommended that no more than 3% of the total blood volume may be 
drawn for research purposes over a 4-week period in neonates and children [60]. 
Therefore, clinicians and researchers are urged to pay special attention on developing 
sensitive assays that allow for the determination of drug concentrations by using a small 
volume of blood samples. 
 
 In addition to the issues addressed above, there are numerous barriers to 
conducting clinical studies in premature infants, including scientific, ethical, practical and 
financial limitations. All of these challenges hinder further evaluation of new drugs and 
established treatments in children. Thus, research to gain a broad understanding of 
developmental changes in pharmacokinetics and pharmacodynamics in young children 
needs to take advantage of appropriate research tools to develop the best dosing strategies 
for young children.   
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Some Research Strategies in Pediatric Studies 
 
 
Quantitative assays: liquid chromatography tandem mass spectrometry 
(LC-MS/MS) technique 
 
 In order to overcome some of the limitations of PK studies in young children, 
innovative analytical approaches to facilitate pharmacokinetic evaluation in children are 
needed. Liquid chromatography coupled with tandem mass spectrometry detection 
(LC-MS/MS) has developed into a powerful, analytical approach because of its 
robustness, high sensitivity, selectivity and accuracy, allowing for reliable drug and 
metabolite quantification at low therapeutic levels. Given the fact that 90% of 
medications used in the NICU are off-labeled, there is a great need for the study of 
medication commonly used by newborn infants to ensure their safety and efficacy. The 
ability to determine multiple analytes within one small volume of biological fluids 
(mostly plasma) at one time is highly favorable in pharmacokinetic studies of newborns. 
This feature is of great benefit because it enables researchers to gain the maximum 
amount of PK information in different drugs through the quantitation of multiple drugs 
from a single micro volume of plasma, thus minimizing the burden of invasive venous 
punctures in infants involved in pharmacokinetic studies. A number of quantitative assays 
using LC-MS/MS methodology have been previously described [61-67]. The focus on 
this analytical technology allows us to rapidly establish flexible assays to quantify drugs 
of interest classified by their physicochemical properties. The most commonly prescribed 
medications for premature neonates in the NICU and for infants were placed on the top of 
the priority list to be studied. Among them, acetaminophen, caffeine, phenytoin, 
ranitidine and theophylline were included in our current study.  
 
 
Population pharmacokinetics  
 
 Modeling and simulation (M&S) are methods that have been widely used in drug 
development to support study design, data analysis, and study decision making. Modeling 
allows for a quantitative description of pharmacokinetic and/or pharmacodynamic 
properties of the investigated drugs by analyzing the observed data from preclinical and 
clinical studies. It is usually expressed in a simplified manner, such as focusing only on 
the important factors, to characterize a system or process [68]. Simulation refers to the 
use of established pharmacokinetic and/or pharmacodynamic models to predict future 
outcomes that have not been investigated experimentally. Model-based drug development 
has been widely recognized as an invaluable tool in clinical research and is also 
recommended by the FDA to be applied to drug development to improve knowledge 
management and decision making [69].  
 
Traditional PK and PopPK  
 
 The traditional PK approach is widely used in the early phase of drug 
development. It usually involves a small group of subjects who are followed with an 
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intensive pre-defined sampling scheme. Some special populations, such as the elderly, 
pediatric patients or severe anemia patients, are not suitable for these study interventions 
due to ethical and medical concerns. To characterize the pharmacokinetics of the studied 
population in a traditional PK study, a standard two-stage (STS) approach is applied: 
First each individual’s PK parameters is estimated from dense sampling, and then 
population parameters are expressed as mean and standard deviation of the estimated 
individuals. For the most part, mean values of the parameters have little or no bias, but 
estimation of between-subject variability is biased due to the small number of studied 
subjects. A rich data set will provide the most accurate information. 
 
 Application of population pharmacokinetics (PopPK) was first introduced in the 
1970s by Sheiner and colleagues [70]. Today, PopPK has become a standard approach to 
investigate PK data during drug development and evaluation. PopPK is defined as the 
study of the sources and correlates of variability in drug concentrations among 
individuals who represent the target patient population receiving the clinically relevant 
doses of a drug [71]. Compared to traditional PK, it has several advantages in data 
analysis. It allows for simultaneously analyzing pooled data from multiple subjects with a 
relatively flexible sampling scheme. The number of samples from each subject can be 
sparse, dense or a combination of sparse and dense data (mixed sampling), and sampling 
times do not have to be same from all patients. This can greatly reduce the individual 
burden of blood sampling as well as adapt to the patients’ convenience for blood 
sampling. It allows simultaneous estimation of the typical values of PK parameters in the 
targeted population and identifies the sources and magnitude of the variability as well. 
Through the population analysis, variability in the PK and PD response due to predictive 
factors or covariates (such as demographics, genetics, concomitant drug administration, 
pathophysiological conditions, disease status, food effects, formulation, etc.) can be 
considered and identified. The analysis also provides empiric Bayesian estimates of 
individual parameters and parameter associated between-subject variability, which 
subsequently can be used for individualized dosing strategy. 
 
PopPK and nonlinear mixed effects model 
 
 Nonlinear mixed effects modeling is often used to perform PopPK analyses. The 
typical model includes fixed effects (θ) and two levels of unexplained variability (random 
effects), between-subject variability (η) and residual variability (ε). η describes the 
differences between the typical population parameter θ and the individual-specific 
parameter estimate. Its distribution is assumed to be normal, with mean of 0 and variance 
of ω2. ε describes the difference between model predicted concentration and observed 
concentration, with expected distribution of mean 0 and variance σ2 [72]. Residual error 
could come from incorrect dosing, sampling record errors, assay error, within-subject 
variability, or model misspecification. 
 
 The PopPK model process includes two primary components: a structural model 
and a covariate model. The structural model, which most times is also referred to as the 
base model, is the simplest model ready for stepwise model building. Generally, the 
structural model is the model that can best describe the data without any covariate. 
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However, in some special cases, it’s widely believed that a relationship between model 
parameters and a predictive factor can also become part of the structural model a priori. 
An example is size adjustment using the fixed-exponential allometric model a priori in 
pediatric PopPK analysis [73]. The covariate model building process explores and 
identifies factors that are important in explaining/reducing between-subject variability 
and residual variability. In premature neonates and infants, age (gestational age, postnatal 
age [PNA], postconceptional age [PCA]) and size (body weight, birth weight [BW], body 
surface area, lean body weight) are two classes of significant factors correlated to 
maturation process. Other examples of covariates are concomitant medication, genotype, 
and biomarkers. Covariates can be added into the base model in a stepwise fashion, either 
with proportional, exponential, fractional or additive relationships, depending on their 
nature (categorical or continuous) and their correlation to parameters [74, 75]. 
 
 Several software packages are capable of handling population-based PKPD 
analysis [76], including NLME (Bell Labs, Murray Hill, New Jersey), WinNONMIX® 
(Pharsight Corporation, Mountain View, California), Monolix (LIXOFT, Orsay, France), 
WinBUGS (Bayesian via Markov Chain Monte Carlo [MCMC] methods, MRC 
Biostatistics Unit, Cambridge, UK), SAS (SAS Institute, Cary, North Carolina), 
S-ADAPT (Biomedical Simulations Resource, Los Angeles, California), and S-Plus 
(TIBCO Software, Palo Alto, California). The most widely used software today for the 
characterization of PopPK, however, is NONMEM® (distributed by ICON Development 
Solutions, Ellicott City, Maryland).  
 
 
Application of modeling and simulation in pediatrics 
 
 The modeling and simulation (M&S) approach has been widely used in all phases 
of drug development and drug evaluation, from preclinical to post-marketing 
(Figure 1-3) [77]. Today it has become an integral part of the drug development process 
and regulatory decision making [78]. In a review of 198 submissions between 2000 and 
2008 to the US FDA [79], the number of cases involving M&S analyses (pharmacometric 
approach) had increased 6-fold over 9 years. Among them, 26% of the submissions 
included pediatric studies.  
 
 The core component of pediatric studies is to provide optimized dosing regimens 
for safety and efficacy with both new and established medications. On the one hand, 
scientific-based drug development and pharmacotherapy are greatly needed and have 
been mandatory by legislation [80]; on the other hand, pediatric studies are hampered to a 
great extent by ethical, medical and practical issues. The advantages of M&S are to give 
added value to pediatric drug studies for its ability to overcoming such challenges in this 
population group. Due to recent regulatory incentives for the conduct of pediatric studies, 
population-based M&S plays an increasingly important role in pediatric drug 
development [81]. In the current work, we focus on the effect of population-based M&S 
on data analyses, sample size estimation and selection of dosing regimens.  
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Figure 1-3. Potential applications of modeling and simulation concepts during 
preclinical and clinical drug product development  
 
Source: Reprinted with permission. Meibohm, B. and H. Derendorf, Pharmacokinetic/-
pharmacodynamic studies in drug product development. J Pharm Sci, 2002. 91(1): p. 18-
31. 
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Population-based modeling: sparse and unbalanced sampling 
 
 As we discussed, one of the specific advantages of population-based M&S is the 
capability of handling sparse and unbalanced data from a large, heterogeneous group of 
patients, which is the situation in neonates and infants studies [73]. Because of ethical 
and medical concerns, young children are well protected by minimizing the invasive 
samplings and all blood specimens are usually only collected for a therapeutic or 
diagnostic purpose. Therefore, the number of blood samples from each individual is very 
limited and usually doesn’t follow a fixed sampling schedule. The successful application 
of M&S makes the study of this critically ill population (NICU patients) more feasible. A 
number of PopPK studies were conducted in children using sparse data with unbalanced 
design, or they took advantage of therapeutic drug monitoring (TDM) data, and the 
developed models and results were successfully translated into clinical therapeutic 
decision making, thereby benefitting patients with optimal dosing regimens. Some of the 
examples include vancomycin [82-84], phenytoin [85], midazolam [86], aminoglycosides 
(gentamicin, tobramycin, netilicin, amikacin) [87] and sotalol [24]. Identification of 
significant factors contributing to the variability of parameters can be especially 
important in premature infants where rapid developmental changes occur over relatively 
short periods of time, resulting in a large variability in drug disposition. The developed 
models can be used in the future for dosing regimen optimization by relating PK 
parameters (such as CL) and patient demographic factors (such as body weight and, age) 
to criteria for therapeutic safety and efficacy. 
 
 
Clinical trial simulation 
 

Clinical study designs can be explored by simulation based on PKPD modeling. 
M&S as a powerful tool for rationale decision making provides the capability for careful 
design and planning in pediatric studies. Clinical trial simulations closely depend on 
population pharmacokinetics. They allow researchers and clinicians to explore situations 
that have not been investigated before—thereby gaining insight into a “new world,” for 
example, extrapolating results from animals to humans. Another advantage of clinical 
trial simulations is to help researchers tailor design factors by comparing and 
investigating simulation results as if in the “real world”—including, for example, optimal 
sampling design for a trial, optimized sample size estimation, or optimized dosing 
regimens. M&S provides a scientific framework for efficient decision making, thereby 
increasing the probability of success in clinical studies while minimizing risk and cost. 
 
Optimal study design 
 
 A carefully designed clinical study will improve the probability of “success” by 
comparing and assessing the impact of different design factors that may affect the 
outcome, such as dosing regimen, sample size, number of drop-outs and trial duration, 
with considering uncertainties [88]. Sample size estimation is a key factor for a 
successful study with adequate power and reliable results but involving a minimum 
number of patients (sample size) in order to minimize the trial duration, cost, and the 
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potential risk imposed to the patients. A minimum but adequate sample size is one of the 
most important aspects of optimal study design in pediatric patients due to the ethical 
limitations in this population. However, sample size estimation has not been included in 
most population pharmacokinetic studies. Through the M&S based upon available PKPD 
data and/or prior knowledge, the required number of subjects can be estimated to best 
reflect the study objectives and characterize pharmacokinetics in specific populations. 
We will illustrate this application in Chapter 3.  
 
 Rapid developmental change is another feature associated with pediatric patients, 
especially with neonates and infants, which leads to large between-subject and within-
subject variability in premature neonates and infants. If developmental changes are not 
included during the study design, the clinical trials are likely to fail due to the lack of 
knowledge of drug action during the development process [68, 89]. Simulations coupled 
with PopPK models allow testing the different designs and the impact of uncertainty on 
the outcome of the study in a computer-based, virtual environment; they provide 
researchers chance to gain insight into the results before the study is actually performed. 
Mouksassi et al. [90] used PopPK and clinical trial simulations to select dosing regimens 
for a phase I study of teduglutide in pediatric patients with short-bowel syndrome. In 
their study, realistic covariate input specific to the targeted patient population was 
simulated and used to evaluate dosing strategies under various age-weight, 
pathophysiological conditions thereby determining safety and efficacy in this patient 
population. Thus in the pediatric group, M&S is a useful tool to optimize the study design 
by incorporating the growth effect and maturational changes, and maximize the 
likelihood of achieving target exposure in the real clinical setting. Meanwhile, 
appropriate sample size will ensure a successful study with fewer patients exposed to the 
investigational procedures, which is also meaningful for the ethical and practical 
considerations when conducting a pediatric clinical trial. 
 
Optimal dosing regimen  
 
 Traditionally, approval of a new drug application by FDA was primarily 
determined by reviewing the medical and statistical data. As described previously, an 
important advance in clinical drug investigations is the incorporation of population-based 
M&S into an approval decision [78].  
 

Among all types of decisions making, the majority of cases were relevant to 
dosing selection based on quantitative benefit-risk assessments. Today, pharmacometrics 
allows for dosing regimens to be based on modeling and simulation analyses before they 
are thoroughly studied in phase III clinical trials, or they are supported by 
pharmacometric analyses as confirmatory evidence for supporting labeling information. 

 
 Modeling and simulation can be useful in establishing optimal dosing strategies 
and increasing the successful probability of a clinical study. Empirical Bayes estimation 
of individual pharmacokinetic parameters acquired by modeling analysis, combined with 
individualized measurement, has been successfully applied in pediatric PK studies for 
individual optimal dosing selection. Simulation of PKPD can be performed to predict the 
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drug concentrations or responses under a “real world” condition with different dosing 
regimens. Thus appropriate study design and dosing strategy can be proposed for 
pediatric studies based not only on empirical assumptions but also on a model-based 
approach, Figure 1-4 shows a schematic illustration of this approach. Such approaches 
have been evaluated in multiple studies for regulatory decision making [91-93]. Clinical 
trial simulation allows the utilization of population PK/PD models along with the 
integration of study design, patient demographics and disease status. As a result, optimal 
design can be selected and dosing strategy may be evaluated in various conditions. For 
example, the approval of levofloxacin dosage to treat anthrax in children was based on 
pharmacometric analyses with M&S since no clinical trials could be conducted with the 
recommended dosing regimen [94].  
 
 

Summary and Specific Aims 
 
 Research efforts focused on optimized dosing strategies for safe and effective use 
of medications in premature infants is needed to improve our understanding of drug 
disposition in this population group. The utilization of advanced analytical assays will 
allow for pharmacokinetic studies of drugs commonly used in premature infants. The 
aims of this present work were to investigate research strategies in the pharmacokinetic 
study of drugs used in premature neonates and infants, including bioanalytic assay 
development, trial design factor investigation, PopPK model development and dosing 
regimen assessment. These processes were aimed at developing optimized dosing 
regimens for premature neonates and infants. 
 
 In specific aim 1 (discussed in Chapter 2), to enhance our knowledge on 
pharmacokinetics of commonly used drugs in premature neonates, we developed and 
validated an LC-MS/MS method for the simultaneous determination of commonly used 
medications in the NICU, including acetaminophen, caffeine, phenytoin, ranitidine, and 
theophylline, in small volume human plasma specimens of 50 µL [95]. 
 
 In specific aim 2 (discussed in Chapter 3), we explored sample size requirements 
for observational PopPK studies in premature neonates and infants using theophylline as 
a model drug. A full model-based simulation approach was applied with prior 
information and between-subject variability and residual variability. We evaluated the 
accuracy, precision and power of parameter estimation and also investigated the effect of 
sample size on the detection of significant covariates.  
 
 For specific aim 3 (discussed in Chapter 4), we developed a PopPK model of 
caffeine in premature neonates and evaluated the change of PK parameters throughout 
infancy. The developed model was subsequently used for a dose-optimization study by 
simulation, particularly to simulate the distributions of steady state concentrations at 
different dosing regimens for various age/body size groups, which provided the rationale 
for age/weight specific, optimized dosing regimens.  
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Figure 1-4. Application of PopPK modeling and simulation in pediatric 
pharmacotherapy  
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CHAPTER 2.    A TANDEM MASS SPECTROMETRY ASSAY FOR THE 
SIMULTANEOUS DETERMINATION OF ACETAMINOPHEN, CAFFEINE, 
PHENYTOIN, RANITIDINE, AND THEOPHYLLINE IN SMALL VOLUME 

PLASMA SPECIMENS* 
 
 

Introduction 
 
 Premature infants (gestational age less than 37 weeks) are considered a vulnerable 
patient population due to their immaturity at birth. Born at different gestational ages, they 
experience rapid growth and continuous developmental changes in body size and 
composition as well as organ size and function. Different stages of maturation and 
different maturational trajectories for the physiological and biochemical processes that 
govern drug disposition (i.e., absorption, distribution, metabolism, and excretion) result 
in tremendous inter-individual pharmacokinetic variability, leading to very disparate 
responses to drug therapy [96, 97].  
 
 Acetaminophen, caffeine, phenytoin, ranitidine, and theophylline are widely used 
in the pharmacotherapy of premature and term neonates. Acetaminophen, or paracetamol, 
is an effective and widely used analgesic and antipyretic medication in infants [98]. 
Caffeine and theophylline are both used in the treatment of neonatal apnea in premature 
infants [99-101]. Ranitidine is frequently used for the reduction of intragastric acidity in 
conditions such as pathological gastro-oesophageal reflux or stress ulcer prophylaxis in 
critically ill infants, the latter being a common side effect of steroid treatment in 
premature infants with bronchopulmonary dysplasia [102]. Phenytoin is applied as a 
second line medication for the pharmacotherapy of seizures in patients with treatment 
failure on phenobarbital therapy [103]. Only limited information is currently available on 
the pharmacokinetics of these medications in premature neonates. Ethical and practical 
constraints in sample collection from this patient population limit the number and volume 
of blood specimens available for pharmacokinetic evaluations [104].  
 
 In recent years, high performance liquid chromatography with mass spectrometry 
detection (LC-MS/MS) has become the standard analytical methodology in 
pharmacokinetic evaluations due to its robustness and high sensitivity. LC-MS/MS 
allows for reliable drug and metabolite quantification even within the confines of small 
sample volumes in pediatric studies [104]. A number of quantitative assays using 
LC-MS/MS for the above mentioned drugs have been previously described. These 
methods, however, are limited to the quantification of one specific drug per assay, and 
many do not have sufficient sensitivity to quantify therapeutic drug concentrations in 
small volume plasma specimens [61-67]. Due to the limitations in sample volume, only  
 
 
*Adapted with permission. Zhang, Y., et al., A tandem mass spectrometry assay for the 
simultaneous determination of acetaminophen, caffeine, phenytoin, ranitidine, and 
theophylline in small volume pediatric plasma specimens. Clin Chim Acta, 2008. 398(1-
2): p. 105-12.  
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an assay that can simultaneously determine multiple drugs concurrently used in the 
pharmacotherapy of premature neonates was deemed feasible to support pharmacokinetic 
studies in this population. Thus, in the present study, we developed and validated an LC-
MS/MS method for the simultaneous determination of acetaminophen, caffeine, 
phenytoin, ranitidine, and theophylline in small volume human plasma specimens of 
50 µL.  
 
 

Materials and Methods 
 
 
Chemicals and reagents 
 
 All chemicals used including acetaminophen (C8H9NO2, 99.0%, MW 151.2), 
caffeine (C8H10N4O2, 99.9%, MW 194.2), phenytoin (C15H12N2O2, 99%, MW 
252.3), ranitidine hydrochloride (C13H22N4O3S٠HCl, >99%, MW 350.9), theophylline 
(C7H8N4O2, >99%, MW 180.2) and the internal standard, phenacetin (C10H13NO2, 
MW 179.2), were purchased from Sigma-Aldrich, Inc. (St. Louis, MO). Their chemical 
structures are shown in Figure 2-1. HPLC grade water and methanol were acquired from 
Fisher Scientific (Fair Lawn, NJ).  Pooled human plasma was obtained from LifeBlood 
Biological Services (Memphis, TN). All other materials were purchased from standard 
vendors and were of the highest available quality. 
 
 
Instrumentation 
 

The LC system consisted of a Shimadzu high performance liquid 
chromatographic system (Shimadzu Scientific Instruments, Norcross, GA, USA), coupled 
with a HTC PAL autosampler (Leap Technologies, CTC Analytics, Carrboro, NC). 
Chromatographic separation of acetaminophen, caffeine, phenytoin, ranitidine, 
theophylline, and the internal standard was performed on a Phenomenex Luna® 3 μm 
C18(2) column (50 mm x 2.00 mm, Phenomenex, Torrance, CA) with a gradient elution 
using mixtures of water and methanol, mobile phase A (95:5, v/v) and mobile phase B 
(10:90, v/v), both containing 0.05% formic acid. The optimum separation was achieved 
by increasing mobile phase B from 0% to 80% in the time period of 0 to 3 minutes, 
staying at 80% B from 3 to 5 minutes, and then dropping to 0 % B from 5 to 6 minutes. 
The flow rate was 0.3 mL/min. Detection was performed using a MDS Sciex API 3000 
triple quadrupole mass spectrometer (Applied Biosystems, Foster City, CA) that was 
operated in positive ion mode with turbo electrospray ionization. All analyses were 
performed in the multiple reaction monitoring (MRM) mode. Instrument control and data 
acquisition were performed using the Analyst v1.4.2 software package (Applied 
Biosystems, Foster City, CA).  

 
Optimization of the detection conditions was performed by direct infusion of the 

analytes (1 µg/mL, dissolved in methanol) from a syringe pump into the mass 
spectrometer.  The auto tuning function of the Analyst software was used, and the 
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optimized parameters were used for the simultaneous detection of acetaminophen, 
caffeine, phenytoin, ranitidine, and theophylline. The parameter settings were as follows: 
turbo ionspray gas 7 L/min, nebulizer (nitrogen) gas 4.00 psi, curtain gas 8.00 psi, 
collision-activated dissociation gas 6.00 psi, ionspray voltage 5500 V, temperature 
400 ºC, declustering potential 60 V, focusing potential 200 V, entrance potentials 10 V, 
collision energy 30 V, and collision cell exit potential 12 V. 
 
 
Calibration standards and quality control samples 
 
 Primary stock solutions of analytes and IS were prepared at 1 mg/mL in methanol 
and stored at 20 ºC. 200 µg/mL working solution was prepared by combining equal 
volumes of acetaminophen, theophylline, caffeine, phenytoin, and ranitidine stocks. The 
highest calibrator at a concentration of 25,000 ng/mL was prepared by adding 125 µL of 
200 µg/mL working solution into 875 µL of blank human plasma. Serial 1:2 dilutions of 
the highest calibrator in blank human plasma was used to produce 12 standard calibration 
samples with concentrations of 12.2, 24.4, 48.8, 97.7, 195.3, 390.6, 781.3, 1,562.5, 3,125, 
6,250, 12,500, and 25,000 ng/mL. Internal standard working solution was diluted to 
10 µg/mL in methanol. 1 mg/mL quality control (QC) standard solutions were prepared 
separately. Quality controls were prepared by adding small volumes of stock solutions to 
blank plasma. Three quality control levels at 100, 1,000, and 10,000 ng/mL were 
prepared and utilized for all drugs. Calibrators and controls were freshly prepared before 
each analysis.  
 
 
Sample preparation 
 
 Sample preparation was performed by protein precipitation with methanol. 50 μL 
aliquots of plasma from calibration samples, quality control samples, or plasma 
specimens with unknown drug concentrations were transferred to 0.5 mL microcentrifuge 
tubes. 175 μL of ice-cold methanol containing 10 μL of the internal standard (10 μg/mL) 
was added to each tube. Samples were vortex-mixed briefly at high speed and kept on ice 
for 40 minutes.  The samples were then centrifuged at 14,000 g for 10 minutes at 4 oC. 
Approximately 120 μL of the supernatant of each tube was transferred to an amber clean 
autosampler vial with insert for analysis. 10 μL of the aliquot solution was subsequently 
injected into the LC-MS/MS system. 
 
 
Sample quantification 
 
 Concentrations of each analyte were determined based on the ratio of the peak 
area for their monitored mass transition and the peak area of the mass transition 
characteristic for the internal standard. A calibration curve covering the entire 
therapeutically used plasma concentration range was established for each analyte using 
linear regression analysis of the ratio of analyte peak area/internal standard peak area 
versus analyte concentration with a weighting factor of 1/x. Unknown analyte 
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concentrations were calculated from the calibration curve based on the measured peak 
area ratios for the various analytes monitored. 
 
 
Validation 
 
 The developed LC-MS/MS assay was validated for linearity, accuracy, precision 
and recovery [105]. 
 
Linearity  
 
 Linearity was evaluated over the concentration range of 12.2 to 25,000 ng/mL for 
all analytes. Calibration standards were prepared freshly in duplicate for three validation 
runs on three separate days. The assay acceptance criterion for each standard 
concentration was ± 15% deviation of the nominal concentration, except for the lower 
limit of quantification, where a deviation of ± 20% was accepted.  
 
Precision and accuracy  
 
 Precision was expressed as the percent relative standard deviation (%RSD) and 
accuracy was expressed as percent error [18]. The intra-day and inter-day accuracies and 
precisions of the assay were assessed by analyzing QC samples at three concentration 
levels (100, 1,000, 10,000 ng/mL). Five replicates of each QC sample were analyzed in 
the same batch and %RSD and percent error were calculated for each set of replicates per 
batch to determine the intra-day accuracy and precision. This process was performed 
three times over three consecutive days and %RSD and percent error were calculated for 
all 15 replicates per QC sample in order to determine the inter-day accuracy and 
precision.  
 
Recovery and matrix effect  
 
 Recovery and matrix effect were assessed at three concentration levels (100, 
1,000, and 10,000 ng/mL) for each of the analytes, comparing the peak areas of five 
replicates at each concentration for analyte standards in methanol and standards spiked 
before and after protein precipitation in human plasma [106-108]. Relative recovery was 
expressed as the ratio of the mean peak area of an analyte spiked before extraction to the 
mean peak area of the same analyte spiked post extraction in the same matrix multiplied 
by 100. Absolute recovery was calculated as the ratio of the mean peak area of an analyte 
spiked before extraction to the mean peak area of the same analyte spiked in methanol at 
the same concentration multiplied by 100. The matrix effect was evaluated by comparing 
the mean peak area of analyte spiked post extraction to the mean peak area of an 
equivalent concentration of the same analyte standard in methanol. 
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Results and Discussion  
 
 
Method optimization 
 
 The assay development to simultaneously quantify acetaminophen, caffeine, 
phenytoin, ranitidine, and theophylline in small volume plasma specimens included 
optimization of the MS/MS detection, the chromatographic separation and the sample 
preparation procedures.  
 
 Based on the chemical structures of the analytes, an electrospray ionization 
interface (ESI) was used for ion generation. A Q1 full scan of each analyte and IS was 
acquired in both positive and negative mode when tuned under constant infusion at 600 
μL/h of a 1 μg/mL methanol solution of the analytes. The signal-to-noise ratio was used 
as the measure of sensitivity [109]. The positive ion mode of the ESI was selected for all 
analytes and IS due to a greater sensitivity compared to the negative ion mode. The 
protonated form of the analyte molecules [M + H]+ was monitored at m/z 152.2, 195.2, 
253.3, 315.2, 181.3, 180.3 for acetaminophen, caffeine, phenytoin, ranitidine, 
theophylline, and IS, respectively. Similarly, the most abundant product ion of each 
analyte or IS was selected for observation in the multiple reaction monitoring (MRM) 
scan. The mass transitions selected for quantitative analysis were m/z 152.2 to 110.2 for 
acetaminophen, m/z 195.2 to 138.3 for caffeine, m/z 253.3 to182.3 for phenytoin, m/z 
315.2 to 176.2 for ranitidine, m/z 181.3 to 124.0 for theophylline, and m/z 180.3 to 138.3 
for phenacetin as IS. Figure 2-2 depicts the product ion scan spectra of each analyte and 
the IS.  
 
 Due to the wide range in polarity of the five analytes, a single isocratic elution on 
a C18 column did not result in chromatographic separation within an acceptable run time. 
After evaluation of a variety of elution conditions, the separation, sensitivity, peak shapes 
and retention time were found to be satisfactory when using a gradient elution with a 
mobile phase of water and methanol containing 0.05% formic acid. All analytes and the 
IS had retention times of less than 6 minutes and the total assay run time was 8 minutes 
including the solvent equilibration time. Figure 2-3 shows a representative 
chromatogram for a methanol solution containing 500 ng/mL of each analyte. 
 
 
Assay performance 
 
 A chromatogram acquired from a blank human plasma sample spiked with 500 
ng/mL acetaminophen, caffeine, phenytoin, ranitidine, theophylline is shown in 
Figure 2-4. For all analytes, good linearity in the calibration curves was achieved with 
correlation coefficients of R > 0.9985, or coefficients of determination of R2 > 0.997. 
Figure 2-5 depicts calibration curves for each analyte. 
 
 For acetaminophen, phenytoin, and ranitidine, the assay allowed quantification in 
a range of 12.2 to 25,000 ng/mL, for theophylline in the range of 24.4 to 25,000 ng/mL,  
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Figure 2-2. MS/MS product ion spectra of five analytes and internal standard 
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Figure 2-3. LC-MS/MS chromatograms acquired from a standard methanol 
solution containing 500 ng/mL analytes 
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Figure 2-4. LC-MS/MS chromatograms acquired from blank human plasma 
spiked with 500 ng/mL of analyte drugs 
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Figure 2-5. Calibration curves of analytes 
 
(1) acetaminophen, (2) caffeine, (3) phenytoin, (4) ranitidine, (5) theophylline.  
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and for caffeine in the range of 48.8–25,000 ng/mL. These ranges cover each drug’s 
therapeutically used concentrations in the neonatal age group described as 4,000–20,000 
for acetaminophen [110, 111], 5,000–12,000 ng/mL for theophylline [112, 113], 8,000–
20,000 ng/mL for caffeine [113], 6,000–15,000 ng/mL for phenytoin [103, 114], and 
100–2,000 ng/mL for ranitidine [115-117].  
 
 The lower limit of quantification for each analyte was defined as the lowest 
concentration on the calibration curve with the signal-to-noise ratio (S/N) > 10 and is 
listed in Table 2-1. The upper limit of quantification was defined as the highest 
concentration on the calibration curve. Precision and accuracy for each analyte are 
summarized in Table 2-2. The mean accuracy ranged from 87.5 to 115.0% and the intra-
day and inter-day precision was between 2.8–11.8% and 4.5–13.5%, respectively. 
 
 As some of the clinically measured concentrations may exceed the upper limits of 
quantification, a sample dilution procedure was also evaluated.  The dilution procedure 
was conducted in five replicates for acetaminophen, theophylline, caffeine and phenytoin 
by using one half (25 µL) of the standard sample volume of plasma spiked with 50,000 
ng/mL and 10,000 ng/mL of the analytes. All samples were diluted to 50 µL with blank 
plasma and underwent the same sample processing procedure as previously described.  
The intra-batch (within batch) accuracy and precision for the 1-to-2 dilution at both 
concentration levels ranged from 89.8–110.9% and 1.6–10.4%, respectively (Table 2-3), 
indicating that this dilution procedure can be applied to samples with very high analyte 
concentrations.  
 
 Table 2-4 presents the summarized data for absolute recovery, relative recovery 
and matrix effect. Since trace amounts of caffeine and theophylline were detected in all 
blank plasma batches available to us, the matrix effect and absolute recovery for the low 
and medium concentration range were not evaluated for these drugs. There was no 
significant interference detected from the plasma for any of the other analytes or the 
internal standard. Relative recoveries ranged from 85.6-118.3%, absolute recoveries 
ranged from 67.3–103.5%, and matrix effect assessments ranged from 61.7–112.0% for 
all of the analytes and the IS except ranitidine. Ranitidine showed a range of 105.4–
118.5% for relative recovery, 26.3–41.9% for absolute recovery, and 23.5–35.3% for 
matrix effect. The high relative recovery suggests a good extraction efficiency of the 
protein precipitation method for all analytes and the IS. Similarly, percentage values for 
absolute recovery and matrix effect assessment were relatively high for all analytes 
except ranitidine, suggesting only a minor effect on the signal intensity by ion 
suppression from the matrix. Although ranitidine showed a relatively low absolute 
recovery and a pronounced matrix effect for human plasma, the analytical method was 
deemed acceptable for the intended purpose due to the satisfactory accuracy and 
precision obtained within the quantification range of ranitidine.  
 
 We also evaluated the effects of hemolysis, lipemia and hyperbilirubinemia 
(TBIL > 25 mg/dL and > 50 mg/dL) on the quantification of each drug at low (100 
ng/mL), medium (1,000 ng/mL), and high concentration (10,000 ng/mL) levels. No 
interference in the analysis was noted when these factors existed separately or combined.   
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Table 2-1. Calibration range and lower limit of quantification (LLOQ) for each 
analyte 
 
Analyte Calibration Range (ng/mL) LLOQ (ng/mL) 
Acetaminophen 12.2 - 25000 12.2 
Caffeine 48.8 - 25000 48.8 
Phenytoin 12.2 - 25000 12.2 
Ranitidine 12.2 - 25000 12.2 
Theophylline 24.4 - 25000 24.4 
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Table 2-2. The accuracy and precision of the LC-MS/MS method for each analyte 
 

Analyte 
Nominal 

Concentration 
Accuracy                                               

(%) 
Intra-day 
Precision 

Inter-day 
Precision 

(ng/mL) Day 1 Day 2 Day 3  (%RSD)  (%RSD) 
 100 97.8 96.9 102.6 10.2 10.0 
Acetaminophen 1000 90.7 109.8 102.6 10.8 13.0 
 10,000 87.5 108.8 94.6 5.3 10.9 
       
 100 104.3 107.9 104.2 6.9 6.8 
Caffeine 1000 95.8 103.5 100.7 11.8 11.5 
 10,000 103.0 111.6 105.6 6.0 6.6 
       
 100 90.6 105.8 105.6 10.7 13.2 
Phenytoin 1000 93.9 115.0 99.8 4.1 9.2 
 10,000 109.0 111.2 102.0 2.8 4.5 
       
 100 112.4 113.3 99.6 4.5 7.1 
Ranitidine 1000 106.4 110.4 105.3 5.7 5.6 
 10,000 102.8 108.1 106 6.5 6.4 
       
 100 101.6 98.6 103.7 8.3 8.3 
Theophylline 1000 90.2 108.9 112.4 8.8 13.5 

 10000 108.6 111.6 95.4 7.3 10.0 
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Table 2-3. Performance of a dilution procedure 
 

Analyte Dilution Factor 10000 ng/mL  50000 ng/mL 

   Accuracy Precision  Accuracy Precision 
Acetaminophen 1 to 2 107.5 7.1  89.8 2.6 
Caffeine 1 to 2 110.9 8.7  93.1 2.0 
Phenytoin 1 to 2 109.6 4.7  107.3 1.6 
Theophylline 1 to 2 97.9 10.4  103.7 2.0 

 
 
 
 
Table 2-4. Recovery and matrix effect 
 

Analyte Relative Recovery  
(%) 

Matrix Effect 
(%) 

Absolute Recovery 
(%) 

Acetaminophen 109.1-116.6 61.7-88.8 67.3-103.5 
Caffeine 107.0-112.8 89.4* 96.2* 
Phenytoin 92.5-109.6 72.7-110.5 68.5-102.2 
Ranitidine 105.4-118.5 23.5-35.3 26.3-41.9 
Theophylline 85.6-118.3 80.7* 87.1* 
IS (Phenacetin) 94.3-97.9 100.0-112.0 94.2-102.0 

 
* Since traces of caffeine and theophylline were detectable in blank plasma, matrix effect 
and absolute recovery were evaluated only at the highest concentration level for these 
analytes. 
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In addition, we investigated the potential interference of high concentration differences 
for analytes that are incompletely separated in the chromatographic process, particularly 
acetaminophen, caffeine and theophylline. Tested molar ratios of up to 13:1 did not result 
in any interference. 
 
 Figure 2-6 shows a representative LC-MS/MS chromatogram acquired from the 
plasma sample of a human subject taking four of the drugs captured by our assay. The 
analyzed concentrations were acetaminophen 7,010 ng/mL, theophylline 4,570 ng/mL, 
caffeine 401 ng/mL, and ranitidine 432 ng/mL.  
 
 

Conclusions 
 
 In summary, we developed a rapid, accurate, sensitive, and reliable LC-MS/MS 
method to simultaneously quantify five drugs frequently used in the pharmacotherapy of 
preterm neonates. The analyte quantification can be performed from small volume human 
plasma specimens of only 50 μL, thereby facilitating an efficient use of limited blood 
samples in pediatric patients. This bioanalytical assay is highly useful in supporting 
clinical pharmacokinetic studies of these drugs in premature infants when combined with 
population-based modeling and simulation techniques [9]. 
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Figure 2-6. A representative LC-MS/MS chromatogram acquired from a 
subject’s plasma  
 
(1) acetaminophen 7,010 ng/mL, (2) theophylline 4,570 ng/mL, (3) caffeine 401 ng/mL, 
(4) ranitidine 432 ng/mL. 
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CHAPTER 3.    SIMULATION-BASED SAMPLE SIZE OPTIMIZATION TO 
SUPPORT THEOPHYLLINE POPULATION PHARMACOKINETIC STUDY 

DESIGN IN PREMATURE NEONATES 
 
 

Introduction 
 
 In Chapter 1, we discussed the major challenges in conducting pharmacokinetic 
(PK) studies in a pediatric population. Generally, ethical and practical concerns hamper 
clinical studies in premature infants as compared to adults and older children. The core 
problem is a lack of sufficient data for PK analysis due to the limited number of blood 
samples available per patient and the limited number of available patients. Chapter 2 
describes an accurate and sensitive LC-MS/MS assay that was developed and validated 
for PK studies in premature infants. The presented bioanalytical assay allows for 
simultaneous quantification of five frequently used drugs from a single plasma sample as 
small as 50 μL. Therefore, this assay provides an opportunity for clinicians to assess the 
PK of multiple drugs in premature infants simultaneously, which is valuable in expanding 
our knowledge of PK in this population. Modeling and simulation is another effective 
tool in pediatric PK studies. It allows researchers to explore “what if” scenarios and 
therefore facilitates the optimization of study design in drug development and applied 
pharmacotherapy in terms of sampling scheme (the time and number of blood samples 
collected per patient) and sample size estimation (minimal number of subjects needed 
under the given sampling scheme), resulting in a reduced need for experiments and 
invasive study procedures. In this chapter, a full model-based, optimal-sample-size 
estimation for a population pharmacokinetic (PopPK) study is presented. Theophylline 
was used as a model drug in the current study. The results may be applied in future 
PopPK studies in premature infants with drugs commonly used in the neonatal intensive 
care unit (NICU). 
 
 
Specific sampling design in pediatric studies 
 
 The aim of a pediatric study to characterize the PK disposition of drugs 
commonly used in preterm infants is to ultimately use this information to guide an 
individualized dosing strategy. To minimize the number of needed patients and the 
procedures needed with each individual in this vulnerable population, an optimum 
clinical trial design is desirable. However, a well-designed clinical study with an optimal 
preplanned blood sampling schedule may not be practical and ethical in the NICU setting, 
since research in this study population can only be performed within the context of 
therapeutically necessary interventions, thereby limiting the available volume, frequency 
and timing of PK blood sampling. Thus, the data collected from routine therapeutic drug 
monitoring (TDM) have been suggested as an alternative for a PK study [118, 119]. One 
major restriction using the data from routine TDM is that most concentration 
measurements are from trough levels, therefore lacking information for the estimation of 
volume of distribution [120], which mainly determines the loading dose of a drug 
treatment. Since a small quantity of (50 μL) plasma is sufficient for an assay quantitation 
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of drug concentrations, the open question is whether an aliquot from leftover routinely 
obtained blood samples can be utilized in PK studies. A NICU patient usually undergoes 
frequent routine laboratory assessments for complete blood count and biochemical tests. 
In some critical situations, blood gas, electrolytes, and blood glucose are also monitored 
as frequently as every one hour for the purpose of therapeutic guidance. We thus 
hypothesized that any available leftover samples from those diagnostic blood samples 
plus TDM data could be used for PK evaluations. One of the advantages of this study 
design, which uses an opportunistic sampling approach as opposed to a more traditional 
preplanned PK approach, is that no extra blood draw will need to be imposed on the 
patients, therefore minimizing patient risk. Meanwhile the potential gain in knowledge of 
specific drug disposition will significantly extend our understanding of drug therapy in 
extremely premature infants. It is expected that over the course of the study, the sampling 
times are variable among the patients and the number of concentration measurements per 
subject will vary as well due to the different clinical requirements for blood specimens. 
Therefore, both sparse and dense samplings with random sampling time allocations for 
different drugs are expected in this study. In this particular case, we asked the question 
how many patients are minimally required for a PopPK study to ensure accurate 
estimation of the relevant model parameters to reliably detect clinically meaningful 
differences. 
 
 
Sample size and population pharmacokinetics 
 
Population pharmacokinetics (nonlinear mixed effect modeling) 
 
 The population pharmacokinetic (PopPK) approach, using nonlinear mixed 
effects modeling, allows for the simultaneous analysis of pooled data from multiple 
patients and provides population-typical as well as individual PK parameter estimates. 
One popular tool for PopPK analyses is the NONMEM® software. The term PopPK is 
used synonymously with nonlinear mixed effects modeling today. It has been frequently 
applied in pediatric studies due to the ability to extract information from sparse and 
unbalanced sampling data [11, 76, 121].  
 
Sample size for PopPK 
 
 Inefficient sampling design and unsuitable sample size may lead to a failed 
population pharmacokinetic study [122]. Although it is always favorable to acquire 
parameter estimations from a large sample size, the key is to determine the minimum but 
adequate number of subjects needed to balance the study cost and duration, and to ensure 
a study with adequate power. Sample size has been demonstrated to be one critical 
determinant. Its calculation for analyses in nonlinear mixed effects modeling has not been 
clearly defined. A number of publications suggested sample size determinations for 
PopPK studies. Those proposed methodologies were either formulae based by using the 
Wald statistic with first-order linearization of the nonlinear mixed effects model [123, 
124] or simulation based on the likelihood ratio test or a confidence interval (CI) 
approach [125, 126]. All of these studies determined the minimum sample size needed 
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for detecting some level of difference for a parameter between two subpopulation groups 
based on a prespecified hypothesis test, i.e., determining sample size as a function of 
statistical power and clinically meaningful effect size (together with a given type I error 
probability). For example, the hypothesis to be tested could be: is clearance in group one 
15% lower than that in group two? How many subjects do I need to detect this 
difference? How many subjects do I need if the difference in clearance is 30% or 40%? 
Usually only the primary model might be involved, and some categorical covariates (such 
as gender groups, two or more age groups) might be investigated as a subgroup.  
 
 In contrast, our study focused on two issues. The first was to estimate the typical 
population pharmacokinetic parameters and their between-subject variability with certain 
levels of accuracy and precision. Secondly, we wanted to assess and identify potential 
covariates, that are significant predictors of pharmacokinetic parameters, such as CL and 
volume of distribution [72]. Accordingly, the major concerns of sample size 
determination in such studies should not focus on testing hypothesis or detecting the 
differences in parameters between subgroups. Instead, sample size estimations would be 
carried out for the purpose of a successful PopPK study: how many subjects should be 
recruited so as to (1) obtain parameter estimations in the model with adequate accuracy 
and precision; (2) reliably determine covariate effects by separating a covariate model 
from the base model or its nested covariate model. Ogungbenro and Aarons [127] 
proposed a confidence interval approach for the sample size determination of a PopPK 
study when there is no clear hypothesis to be tested. In the current study, we attempted to 
extend the application of this approach to explore the impact of sample size on the 
quantification of continuous covariate effects (weight and age) in premature infants. In 
our study, given a more complicated study design in premature infants, time-dependent 
covariates and randomized sampling design were included; dose levels, sampling times 
and number of concentrations per subjects were different for different patients. We here 
present a full model-based sample size estimation using a simulation approach.  
 
 
Objective 
 
 This simulation study was to explore sample size requirements for observational 
PopPK studies in premature infants using theophylline as a model drug. It took prior 
information (model, parameter estimates, between-subject variability and residual 
variability) to identify a sample size that could provide unbiased and precise estimates for 
the fixed and random effect parameters and covariate effect determination.  
 
 

Methods 
 
 
Overview of methodology 
 
 Figure 3-1 illustrates how the simulations were conducted to assess different 
sample sizes for their ability to yield meaningful results given the same PopPK study   
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Figure 3-1. Overview of the methodology of the simulation and estimation steps 

This figure details how the simulations were conducted to assess the designs and their 
results. 
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design. Main steps included:  
 

• SAS 9.1 was used to generate the datasets, including covariates and dosing 
history. 
 

• 200 independent datasets for each sample size (9-200 subjects per study) were 
simulated. 
 

• A previously established population pharmacokinetic model and model 
parameters were employed to simulate all concentration datasets. The step was 
accomplished by using NONMEM version VI, Level 2.0 (ICON Development 
Solutions, Ellicott City, Maryland) with GNU Fortran 77 (g77) version 2.95 (Free 
Software Foundation, Cambridge, Massachusetts). 

  
• The PopPK model used for concentration simulation was applied to perform 

re-estimation. Parameter estimates were then obtained for each dataset. 
 

• The process was repeated with 200 independent datasets. Median and 95% 
confidence intervals (CIs) were then obtained for each parameter from 200 
estimates.  
 

• The bias (accuracy) and precision in the estimates of the population mean PK 
parameters and variance components were evaluated.  
 

• The impact of sample size on the parameter estimations in the model was 
evaluated based on the proportion of the total number of simulations where the 
estimated parameter values would fall inside a pre-specified interval considered 
“close enough” to their respective true value. 
 

• Power to detect two continuous covariates, body weight and postnatal age, was 
calculated as a fraction of tested statistics obtained in total number of simulations.   

 
 From the literature review, drugs of interest, such as caffeine, theophylline, 
acetaminophen and phenytoin, all exhibited one compartment disposition model, with age 
and weight being the two most important covariates of clearance and volume of 
distribution [85, 128-130]. Therefore, a one-compartment model was considered to 
examine the influence of sample sizes on the parameter estimation; weight and age were 
used to illustrate the covariate effect determination in the PopPK study.  
 
 
Datasets and simulating study design 
 
 Simulated datasets containing demographic data, dosing histories and sampling 
times were generated using SAS version 9.1 (SAS Institute, Cary, North Carolina).  
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Covariate simulation: demographic variables 
 
 Demographic variables, including birth weight (BW) and postnatal age (PNA) at 
the entry time (PNA0), were generated by randomized uniform distribution based on 
defined ranges in published data [131]. Postnatal age ranged between 1 and 25 days at 
entry time into the study. Birth weight ranged from 400 g to 1500 g. Considering the fact 
that premature neonates might be born at different gestational ages, no correlation was 
given between PNA0 and BW. PNA was then derived from PNA0, and body weight 
(WT) derived from BW and PNA according to biologically rationale development curves 
through the 14-day sampling window, using published growth behavior [132]. Thus 
 

PNA0 (days) ~ U (1, 25) BW (g) ~ U (400, 1500) 
 

 Where U (a, b) refers to a uniform distribution with lower (a) and upper (b) limits. 
 
Dosing history 
 
  All subjects were simulated to receive orally administered theophylline with a 
loading dose of 6 mg/kg followed by maintenance doses of 3 mg/kg every 12 hours for 
14 days.  
 
Pharmacokinetic samplings  
 
 The simulations assumed that future population studies in premature infants will 
be conducted with an opportunistic sampling approach as opposed to a more traditional 
pharmacokinetic approach. A mixed and unbalanced sampling design (both sparse and 
rich sampling) was included. All sampling times were simulated as random occurrences 
rather than a pre-planned sampling scheme as only blood samples drawn for clinical 
purposes would be used in the study. For each design (sample size), one third of 
individuals supplied 2 sampling measurements, one third supplied 4 measurements, and 
the remaining one third provided 8 sampling points. 
 
Simulation scenarios 
 
 Sample sizes of 9, 15, 20, 40, 60, 80, 100, and 200 patients per study were 
simulated. For each sample size, 200 independent datasets were generated under the same 
condition. 
 
 
Pharmacokinetic model and statistical model 
 
 Theophylline was used as a model drug to illustrate the method described in this 
section. A previously established population pharmacokinetic model with model 
parameters for both fixed and random effects was used in the evaluation [131]. The PK 
model was described by a one compartment model with first order absorption and first 
order elimination. The population pharmacokinetic model, parameterized in terms of  
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clearance (CL), volume of distribution (V) and bioavailability (F1), was as follows: 
  

TVCL (mL/hr) = θ1 * WT (g) + θ2 * PNA (days) 
 

TVV (L) = θ3 * WT (g) 
 

TVF1 = θ4 
 

 Where TVCL is the population typical value of clearance, TVV is the population 
typical value for volume of distribution, and TVF1 is the typical population value for 
bioavailability. θ1 is the coefficient for the effect of WT on CL. θ2 is the coefficient for 
the effect of PNA on CL and θ3 is the coefficient for the effect of WT on V. Following 
literature, we assume these parameters to be θ1= 0.0123, θ2= 0.377, θ3= 0.000937 and  
θ4 = 0.918 [131].  
 
 The between-subject variability (BSV) of the population typical value of CL and 
V was expressed by proportional error models as follows: 
 

CLj = TVCL * (1+ηCL,j) 
 

Vj = TVV * (1+ηV,j) 
 

ηCL,j, ηV,j ~N (0, ω2) 
 
 Where CLj and Vj are parameter estimations for the jth individual in the study. 
ηCL,j and ηV,j represent random variables normally distributed with zero means and 
variances of ωCL

2 and ωV
2, respectively. ωCL

2 and ωV
2 can be estimated by NONMEM 

and represent the between-subject variability in the population. 
 
 Residual variability was described by an additive error model as follows: 
 

Cobs,ij = Cpred,ij + εij 
 

εij ~N (0, σ2) 
 
 Where Cobs,ij is the ith observed concentration in the jth subject, Cpred,ij is the ith 
model predict concentration in the jth subject and  εij is the deviation of Cobs,ij from 
Cpred,ij. εij is a normally distributed random variable with an average value of 0 and 
variance of σ2. 
  
 Simulation values of between-subject variability of CL and V in terms of 
coefficient of variation (CV %) were set at 15% on clearance and 43.5% on volume of 
distribution --the same as the estimates reported in the original publication [20]. The BSV 
on bioavailability F1 was set at 0. Residual variability in terms of standard deviation was 
set at 1.93 mg/L, representing the differences between the observed and predicted  
concentrations in the study population [131]. 
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Simulating concentration profile 
 
 Using the pharmacokinetic model described above and all the parameters for both 
fixed and random effects, concentration profiles for theophylline in premature infants 
were simulated with nonlinear mixed effect modeling, as implemented in NONMEM VI, 
using the first order conditional estimation (FOCE) method.  
 
 
Data Analysis 
 
Parameter estimation 
 
 For each specified sample size, 200 replicates (or independent datasets) were 
analyzed. The model described earlier was fitted to all the datasets. For each replicate 
dataset, fixed effect parameters θ1, θ2, θ3 and variability parameters ωCL, ωV and σ were 
re-estimated by NONMEM VI using the same model. Bioavailability parameter θ4 was 
fixed since exclusive oral data was simulated in this study. First-order conditional 
estimation method was used in all cases throughout the study. Approximately 2-15% of 
estimation runs in each study experienced terminated minimization with reported 
parameter estimates; these model-fitting processes were repeated with adjusted initial 
estimates. This procedure did not necessarily lead to successful convergence. However, at 
least 90% of the 200 simulation runs converged successfully for each study. All reported 
parameter estimates, including those from terminated minimizations, were used in the 
analysis. This procedure was carried out in each study design, with a sample size of 9, 20, 
40, 60, 80, 100, and 200 subjects per study.  
 
 The parameters obtained from the 200 simulation datasets for each sample size 
were compared with the numbers used in the concentration simulation step to assess the 
bias and precision in the estimates of the population mean PK parameters and variance 
components. Median parameter estimates were compared to the ‘true’ parameters of the 
originating model, and 95% CIs for 200 replicates of each study were determined and 
evaluated by visual inspection [122] to detect trends in the results. Mean prediction error 
(%MPE) and root mean square error (RMSE) were computed as indices of accuracy and 
precision using the following formula:  
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 Where n = number of simulations (n = 200), 𝑃𝑃�𝑗𝑗𝑗𝑗  is the value of parameter Pk 
estimated in the jth simulation and Pk is the criterion value of parameters, representing 
both fixed- and random-effect parameters. 
 
 In order to assess whether a certain number of subjects (sample size) is enough to 
capture the true value of the parameter Pk in the PopPK study under the given 
opportunistic sampling design (blood samples collected per subject), the propensity of the 
resulting parameter estimates to fall within pre-specified narrow intervals containing the 
true parameter values was also investigated for each sample size. Typically, the statistical 
power of a hypothesis test is defined as the probability that we correctly reject the null 
hypothesis when a certain minimal effect size (deviation of the true value from the value 
assumed under the null hypothesis) is indeed present (equivalent to 1- β = 1- probability 
of a Type II error). In a simulation study, statistical power is typically not determined by 
formula-based computations but determined by the percentage of correctly rejected null 
hypotheses in repeated computer experiments that emulate certain realistic study settings 
[133]. In the current study, we compare the estimated parameter 𝑃𝑃�𝑗𝑗𝑗𝑗  to the criterion 
parameter from the literature, Pk, (the ideal ratio of 𝑃𝑃�𝑗𝑗𝑗𝑗  to Pk is 1 if 𝑃𝑃�𝑗𝑗𝑗𝑗  coincides with the 
true parameter value). If a difference > 20% (20% precision level) is determined to be 
significantly different, a range of 0.80-1.25 for the ratio is an acceptable criteria based on 
the two one-sided tests procedure [134]. That means if the ratio of 𝑃𝑃�𝑗𝑗𝑗𝑗 / Pk falls in the 
range of [0.80, 1.25], we considered the true parameter could be accurately estimated at 
the 20% precision level (i.e., would be reproducible for practical purposes). Note that this 
procedure is somewhat similar to the traditional “power” concept but has important 
distinctions; most notably we compare the obtained ratio to a pre-specified interval of 
acceptable values, and hence do not compute a confidence interval that would vary in 
each iteration of the simulation as is the case in statistical hypothesis testing. 
Furthermore, we are interested in how often we estimate the parameter “close enough” to 
the true value when simulating from this true model and do not evaluate how often we 
reject a certain value when the true model indeed differs in a particular way as would be 
the case when determining traditional power of a study. We proceeded as follows: For 
each investigated sample size, 200 ratios were obtained from the 200 simulations. The 
relative success of our computer experiments (”power”) were computed as the number of 
times we “correctly” identified the parameter value (estimate within the pre-specified 
values) divided by 200. Namely, the percentage of the 200 ratios that fell within the 
limits of 0.80-1.25 is referred to as the relative success (“power”) of the study. This 
procedure was also repeated at precision levels of 30% and 40% for parameter 
estimations with the corresponding ranges of [0.70, 1.43] and [0.60, 1.67] for the 𝑃𝑃�𝑗𝑗𝑗𝑗 /Pk 
ratios. 
 
 
Covariates effect determination 
 
 The impact of sample size on covariate effect determination was investigated 
through comparison of objective function values (OFV) of a covariate model and its 
nested model in 200 replicate datasets. OFV is proportional to -2 log likelihood of the 
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data and is a global measure of goodness of fit. Postnatal age and body weight were 
selected as the predictors of clearance, and body weight was selected as the predictor of 
volume of distribution [131]. Model improvement when including one covariate was 
evaluated based on chi-square distribution with one degree of freedom. A statistically 
significant model improvement was associated with a decrease of OFV by 3.84 when  
P = 0.05. More stringent criteria commonly used are χ2

1, 0.01 = 6.64 and χ2
1, 0.001 = 10.83. To 

be conservative, estimation runs with failed convergence were repeated with adjusted 
initial estimates until successful minimization was gained in all 200 replicates. Model 
separation was based on the decrease of objective function values (∆OFV) at 3 levels 
(i.e., P = 0.05, P = 0.01 and P = 0.001).  
 
 For each proposed sample size design, power was determined by calculating the 
fraction of simulations that ∆OFV achieved or exceeded the prespecified criteria for at 
the three significance levels.     
 
 

Results 
 
 
Dataset generation  
 
 Based on a reported longitudinal postnatal growth study in very low birth weight 
infants [132], average daily weight gain in g/day varied across 100-g birth weight 
intervals, ranging from 15.27 to 27.77 g/day. Gestational age, race and gender had no 
significant influence on the growth rate within each 100-g birth weight interval. So the 
average daily increments stratified by 100 g birth weight interval (Table 3-1) were 
employed to compute the body weight gain in the simulation.  
 
 An example for the mixed, unbalanced and randomized sampling design is shown 
in Figure 3-2. The representative study had included 9 simulated subjects with 42 
concentrations; of them, 3 subjects contributed 2 concentration measurements, 3 subjects 
contributed 4 concentration measurements, and the other 3 subjects contributed 8 
concentration measurements. The sampling allocation time ranged from 0.5 hr to 329 hr 
post loading dose within 14 days (336 hr) treatment. The sampling time spread between 
any two concentration measurements for each subject ranged from 2 hr to 237 hr, with a 
median of 32 hr. All sampling times were simulated as random occurrences over a 14-day 
sampling window, representing the paradigm of flexible blood sampling performed at any 
time. It should be noted that all datasets were generated independently so that the 
descriptive statistics for sampling time and demographic information, such as PNA and 
birth weight, varied in the simulations of the 200 different studies. 
 
 
Precision and accuracy of parameter estimation 
 
 The mean parameter estimates of the 200 simulations using sample sizes of 9, 15, 
20, 40, 60, 80, 100 and 200 subjects are presented in Table 3-2. Under the given study   
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Table 3-1. Average daily increments (g/day) used for body weight calculation 
stratified by birth weight interval 
 

Birth Weight Interval (g) Weight Gain (g/day) 
≤ 600 15.27 

601-700 16.81 
701-800 18.6 
801-900 20.06 
901-1000 21.04 
1001-1100 22.83 
1101-1200 24.73 
1201-1300 26.34 
1301-1400 27.15 
1401-1500 27.77 

 
Source: Modified with permission. Ehrenkranz, R.A., et al., Longitudinal growth of 
hospitalized very low birth weight infants. Pediatrics, 1999. 104 (2 Pt 1): p. 280-9. 
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Figure 3-2. A representative study showing the mixed, unbalanced and 
randomized samplings from a 9-subject study  
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Table 3-2. Central tendency (median parameter) of estimates for the simulations 
at different sample size 
 

Sample Size θ1 θ2 θ3 ωCL ωV σ 
Criterion 

Value 0.0123 0.000377 0.000937 0.0226 0.189 3.72 

9 0.0120 0.000366 0.000909 0.0110 0.099 3.69 
15 0.0124 0.000365 0.000931 0.0174 0.149 3.57 
20 0.0121 0.000381 0.000911 0.0181 0.150 3.65 
40 0.0126 0.000358 0.000931 0.0196 0.156 3.74 
60 0.0128 0.000357 0.000909 0.0216 0.156 3.72 
80 0.0126 0.000365 0.000927 0.0209 0.161 3.75 
100 0.0126 0.000370 0.000912 0.0223 0.157 3.76 
200 0.0127 0.000357 0.000918 0.0220 0.161 3.77 
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design, median parameters were well estimated across all sample size groups. When 
visually inspected, 95% CIs of PopPK parameters as measure of precision converged as 
sample size increased and became much narrower and remained stable when the sample 
size was > 60 (Figure 3-3).  
 
 The %MPE results are shown in Table 3-3 and illustrated in Figure 3-4. A 
smaller %MPE value indicates an on average smaller (relative) deviation of the estimated 
parameter value from the true value (preferable). All sample sizes gave unbiased 
estimates for all parameters except for two variability parameters, BSV on clearance 
estimation (ωCL) and BSV on volume of distribution estimation (ωV). %MPE was below 
5% for θ1~3, and σ estimations at all investigated sample sizes except for one estimate of 
θ2 showing as -6.2%. Substantial bias in variance of between-subject variability for V and 
CL (ωCL ωV) is noted for small sample sizes. %MPE as large as -33% for ωCL, and -32% 
for ωV was observed at sample size of 9; but dropped to -6.5% and -6.2%, respectively, 
when sample size increased to 40, indicating a marked increase in accuracy with 
increasing sample size. The bias for ωCL and ωV estimations was entirely negative, while 
both positive and negative biases were observed for other parameters in the model. 
Optimal sample size was evaluated by assuming a percentage coefficient of variation 
(CV%) at 15% for CL and 43.5% for V. Histograms of CV % for CL and V by different 
sample size are shown in Figure 3-5 and Figure 3-6. The results suggest that a 
substantial improvement in the estimation of variance parameters is correlated with an 
increased sample size. 
 
 The results of RMSE for the simulations are presented in Table 3-4, and its CV% 
is illustrated in Figure 3-7. RMSE generally decreases in all parameter estimations as the 
sample size increases, indicating increasing precision with increasing sample size. For a 
given sample size, the estimations of fixed effect parameters are better than those of the 
random effect parameters. The number of subjects does not seem to have as significant an 
influence on the precision of parameter estimations as long as it reaches 40 for fixed 
effect parameters and 60 for covariance parameters. 
 
 The influence of the number of subjects on the relative success of the study as 
defined here (“power”) was also investigated. Plots of relative success against sample 
size at various precision levels are presented in Figure 3-8. With our randomized 
sampling design, the relative success of our parameter estimation was deeply influenced 
by sample size, parameter of interest and the selected precision level. For example, 
assuming 20% difference was allowed in parameter estimation, a study would require 20 
subjects to give in 80% of the cases “close enough” estimates for θ1, while at least 100 
subjects would be required to achieve the same performance for θ2 under the current 
sampling and study design. A relatively high success rate (≥ 0.8) was shown in all sample 
sizes for 30% (ratio limit 0.70-1.43) and 40% (ratio limit 0.60-1.67) precision levels for 
θ1, θ3 and σ. The number of subjects required for θ2 also dropped to 40 and 20, 
respectively, at those two levels. The success rate of estimating the BSV parameters ωCL 
and ωV was much lower compared to the other parameters (Figure 3-9). To obtain 
successful estimation with a probability > 0.6, 20, 40 and 200 subjects in each study were 
considered to be sufficient at a precision level of 40%, 30% and 20%, respectively.  



www.manaraa.com

49 
 

 
 
 
Figure 3-3. Median and 95% CIs for PopPK parameters and variance 
parameters from 200 simulated datasets 
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Table 3-3. %MPE of parameter estimates with various sample sizes 
 

Sample Size θ1 θ2 θ3 ωCL ωV σ 
9 -1.884 4.265 0.684 -33.054 -32.119 1.036 
15 1.153 -1.638 0.432 -19.287 -10.914 -1.813 
20 -0.373 4.229 -0.584 -15.043 -13.471 -0.370 
40 1.799 -2.621 -0.755 -6.486 -12.401 3.739 
60 3.463 -6.229 -3.126 -2.591 -12.428 0.780 
80 2.898 -3.789 -1.170 -2.525 -6.966 0.667 
100 2.600 -2.385 -3.152 2.212 -9.565 1.816 
200 3.172 -4.711 -1.767 -1.473 -7.221 2.829 

 
 
 
 

 
 
 
Figure 3-4. Accuracy of parameter estimates in different sample size groups 
 
Bias is expressed in terms of %MPE. 
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Figure 3-5. Estimated BSV on population CL in terms of CV% vs. numbers of 
subjects 
 
The red dash line indicates the CV% = 15%.  
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Figure 3-6. Estimated BSV on population volume of distribution in terms of 
CV% vs. numbers of subjects 
 
The red dash line indicates the CV% = 43.5%.  
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Table 3-4. RMSE of parameter estimates with various sample sizes 
 

Sample Size θ1 θ2 θ3 ωCL ωV σ 
9 0.00293 0.00020 0.00022 0.01849 0.13761 0.96455 
15 0.00263 0.00016 0.00018 0.01836 0.15037 0.74605 
20 0.00215 0.00014 0.00016 0.01227 0.12270 0.65776 
40 0.00143 0.00009 0.00011 0.01084 0.10307 0.84215 
60 0.00128 0.00008 0.00010 0.00637 0.08464 0.47897 
80 0.00123 0.00007 0.00010 0.00740 0.09251 0.38901 
100 0.00102 0.00006 0.00009 0.00775 0.09318 0.40640 
200 0.00082 0.00005 0.00005 0.00427 0.05675 0.35409 

 
 
 
 

 
 
 
Figure 3-7. Precision of parameter estimates in different sample size groups 
 
Precision is expressed in terms of CV%. 
  



www.manaraa.com

54 
 

 
 
 
Figure 3-8. Sample size vs. success rate in parameter estimation (“power”) at 
different precision levels of 20%, 30% and 40% 
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Figure 3-9. Sample size vs. success rate (“power”) at different precision levels of 
20%, 30% and 40% for each estimated parameter in the model 
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Covariate effect determination 
 
 The power to detect a covariate effect was determined by comparisons of 
objective function values for the analyses of 200 independent datasets. Objective function 
value comparisons were made between the structural base model and the covariate model 
under different sample sizes and three different significance levels. Figure 3-10 shows 
the power to detect three covariate effects: body weight on CL, postnatal age (PNA) on 
CL, and body weight on volume of distribution. Being the most important size covariate 
for pharmacokinetic parameters in pediatric population, weight can be detected with a 
higher power using a relatively small sample size. To detect the effect of weight on CL 
with power of 0.8, 9 subjects would be needed at the level P = 0.05; and 15 subjects 
would be sufficient at a more stringent level of P = 0.001. The sample size (with 
significance level) required for the detection of all three covariate effects with power > 
0.8 were 20 (P = 0.05), 40 (P = 0.01) and 60 (P = 0.001), respectively. 
 
 

Discussion  
 
  A well determined sample size for a clinical study based on a specified design is 
considered ethical by limiting the required number of patients while increasing the study 
power. PopPK studies have the potential to fail by providing unreliable results due to an 
inadequate study design and a low statistical power. To include the right number of 
patients is key to solving this problem. To date, most traditional approaches to sample 
size determination are based on hypothesis testing: A certain degree of difference in PK 
parameter estimations must be specified beforehand, and then the sample size needed to 
detect this difference between two or more subgroups is calculated based on Type I and 
Type II error levels [135-137]. The impact of sample size on the detection of the 
relationship between covariates and PK parameters has also been studied. Potential 
covariates were investigated only as categorical factors, such as gender, race, binomial 
response, age brackets or other category of variable [123, 126]. For PopPK studies in 
pediatric populations, the concerns are usually regarding the precision and bias of the 
obtained estimates, instead of a hypothesis or the statistical differences between the 
parameter estimations. Also, the impact of age and size as continuous covariates on the 
PK parameters is of great interest. Therefore, we believe the full model-based simulation 
approach presented here is a more appropriate method for sample size estimation in 
PopPK studies. 
 
 Population pharmacokinetic studies in premature infants have special aspects that 
must be taken into account for a rational and ethical design. In young pediatric patients, 
the number of blood samples from each patient and sampling times usually cannot be 
controlled and predetermined due to therapeutic constraints under which the study is 
performed. Taking advantage of an aliquot from leftover from blood specimens drawn for 
therapeutic purposes may be a new way to generate pharmacokinetic information while 
minimizing patient risk. This sampling strategy determines that the number, and 
allocations of blood samples collected from each patient, will not be identical. The 
population modeling process forms the basis for analyzing sparse and unbalanced data   
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Figure 3-10. Sample size effect on power to detect covariate effects 
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from multiple patients. Although there has been no such experience on sample size 
estimations based on an opportunistic blood sampling design in premature neonates 
group, the model-based simulation approach allows us to explore the impact of sample 
size on the performance of a PopPK study with fixed model properties. We can optimize 
the experimental process by comparing and evaluating the predicted outcomes from 
various designs that cannot be practically explored through clinical testing, thereby 
facilitating decision making [68].  
 

One potential limitation of clinical trial simulations is the reliability of the prior 
information included in the analysis. In the current study, the set of covariates generated 
for each simulated individual should adequately reflect the “real world.” Size and age are 
two important time-varying covariates in neonatal studies that play significant roles in the 
prediction of individual pharmacokinetic behavior (CL and Vd). Unlike adult studies, 
multiple-dose studies with neonates cannot neglect characterizing the infants’ changes in 
size even for a short time. In addition, another fixed effect, dose, is also based on the 
change in body weight. Due to the lack of a demographic database for research in 
premature infants with very low birth weight, creating datasets with physiologically 
reasonable covariates was the first challenge. To account for the difference of growth 
velocity in body weight, all subjects were stratified by 100 g birth weight intervals. Prior 
knowledge of longitudinal growth of very low birth weight infants was included in the 
covariate model [132]. A reference growth chart was derived from 1,660 premature 
infants whose birth weight and gestational age showed similar ranges to in our study. 
Throughout the simulation procedures, mean parameter estimates for covariate effects 
with our generated datasets were in strong agreement with the true values reported by the 
publication used as reference for our PopPK model, suggesting that we successfully 
created a physiologically reasonable virtual patient population of very premature infants. 
However, from the available growth charts, anthropometric measurements for birth 
weights under 500 g were not available. We therefore used the growth velocity for the 
smallest available birth weight interval of 501 to 600 g for all individuals with a birth 
weight < 600 g. Another neglected aspect in our simulation was the fact that the body 
weight simulation did not describe the physiological weight loss commonly observed in 
newborns during the first week after birth. However, the average daily weight gain 
partially, if not fully, accounted for this temporary weight loss. Moreover, through the 
uniform distributed simulation, ~75% of the individuals were older than one week of 
PNA and had already overcome the dip in weight. No significant effect was expected in 
the results; though the assumptions made here might lead to a later bias in variance 
component estimation, they were not a determining factor. 
 
 In this simulation study we examined 8 sample sizes from 9 to 200 with 200 
independent datasets for each of them. Compared to existing methodologies used in 
sample size determination for population pharmacokinetic studies, our study displays 
some unique features. First, a mixed and unbalanced sampling scheme was proposed, 
which means both sparse and intense sampling existed; the sampling time and the number 
of samples from each subject were variable. This feature is close to the expected reality 
of specimen sampling in our future studies in premature infants. Our study evaluated the 
unusual sampling design through a series of simulations and guided the selection of an 
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appropriate sample size based on an acceptable success rate of estimation in the sense of 
“close enough” parameter estimation (similar to the traditional “power” concept but not 
identical). Moreover, the current simulation study investigated power for continuous 
covariates as predictors of pharmacokinetic parameters as a function of sample size. 
Additionally, we performed more complex simulations to mimic the pediatric clinical 
setting in the analysis, with time-variant covariates and body weight normalized dose 
levels.  
 
 The simulation was fully model-based and took advantage of the estimation 
methods in NONMEM VI. The fixed-effect PopPK parameters were generally well 
estimated in terms of accuracy and precision across all tested sample sizes while 
estimations in variance parameters had larger variability and were more often “off target” 
compared to those in fixed effects. This finding was fairly consistent with results from 
other studies [120, 127, 138]. The BSV estimates were all negatively biased except for 
one value—ωCL when sample size = 100 (See Table 3-3 and Figure 3-4). The possible 
reason is that all simulations were based on a model which was a simplified form of the 
real system based on some assumptions. Failing to account for any variability in the 
model may lead to considerable bias in estimations of variance components, especially 
for the between-subject variability [136]. In this study, the magnitude of variability 
employed in the concentration simulation process was derived from the true patients used 
for original model development; however, we used another covariate model to generate 
key covariates, which conserved the correlation between PNA and body weight during 
the 14 days follow-up. These covariates were then used as input in the simulations of 
longitudinal data and parameter re-estimations. Although the generated datasets 
adequately characterized the major aspects of the real patient population, they do not 
necessarily represent atypical patients and the large variability of the “real patients”. This 
covariate model partially contributed to the inaccurate estimations of BSV parameters in 
our study.  
 
 Considering the performance in parameter estimation and covariate effect 
detection, the minimum sample size required for a theophylline study in premature 
infants was determined by the desired precision of parameters of interest under a given 
blood sampling design. If the bias in parameter estimations in terms of %MPE was set as 
a cut-off criterion no greater than 15%, and ≤ 25% and ≤ 50% were accepted measures of 
precision for fixed effect and variance parameters, respectively, a sample size of 40 
subjects was sufficient. At a sample size of 40 subjects, the power to detect the covariate 
effect was > 80% at a significance level of P = 0.01.  
 
 It has been widely recognized that the sample size estimation of a PopPK study is 
considerably influenced by changing study design factors and model properties, such as 
the allocation of blood sampling times, number of blood samplings, estimation 
algorithms in NONMEM, and the magnitude of between-subject variability and residual 
variability [124, 127, 139, 140]. For example, FO and FOCE methods are two commonly 
used NLME estimation algorithms to obtain parameter estimations in NONMEM VI. FO 
might result in considerable bias in parameter estimation due to approximation of the true 
likelihood function. Compared to FO, FOCE is considered to perform better and with less 
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bias in parameter estimation when there is large between-subject and residual variability. 
Therefore, FOCE was selected as the only estimation algorithm throughout the simulation 
study. To focus on our target question of interest, the impact of other estimation methods 
in NONMEM was not investigated in the current simulation study. However, the 
proposed approach also can be used to assess the performance of other NLME estimation 
methods, such as first order conditional estimation with interaction (FOCEI) in 
NONMEM VI, stochastic approximation expectation maximization (SAEM), Monte 
Carlo importance sampling (IMP), Monte Carlo importance sampling assisted by mode a 
posteriori (IMPMAP), and Markov chain Monte Carlo Bayesian (BAYES) in NONMEM 
VII. The application of D-optimality-based, limited sampling schemes is well 
acknowledged for increasing trial efficiency and minimizing the necessary number of 
blood samples by providing informative sampling designs [141-143], which obviously is 
beyond the discussion of this chapter due to our specified opportunistic sampling 
characteristics. However, we can still expect a reduction in the number of patients 
required for reaching the same level of success rate/”power” using an extensive blood 
sampling design or optimal sampling scheme compared to the sparse and opportunistic 
sampling design. The proposed approach may also prove valuable in studying other drugs 
of interest in premature infants if appropriate prior knowledge is available.  
 
 

Conclusions 
 
 In conclusion, we developed a full model-based simulation approach to the 
sample size determination for PopPK studies in premature neonates. A mixed and 
unbalanced sampling design was used in the analysis. For a desired accuracy, precision 
and study power, the appropriate number of patients with a specified sampling design 
was determined using the proposed approach. While the accuracy and precision of 
parameter estimation were shown to benefit from increases in the number of subjects in 
the evaluated observational study approach, designs with 20 premature neonates were 
shown to be inadequately powered to allow for accurate and precise estimation of PopPK 
parameters. Designs with > 40 subjects were required for ≤ 15% in bias, and ≤ 50% in 
precision for parameter estimations of both fixed and random effects with adequate 
power. This result will be useful in selecting samples sizes for upcoming clinical studies 
in premature neonates. 
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CHAPTER 4.    POPULATION PHARMACOKINETIC ANALYSIS OF 
CAFFEINE IN PREMATURE NEONATES WITH APNEA 

 
 

Introduction 
 
 
Apnea of prematurity (AOP)  
 

Apnea of prematurity (AOP) is one of the major concerns in premature neonates. 
AOP is defined as the cessation of breathing that lasts for 15 or 20 seconds and is usually 
accompanied by dangerous hypoxia and/or bradycardia [144]. The incidence of AOP 
increases with increasing prematurity of birth. It affects approximately 85% of neonates 
with birth age < 34 weeks gestational age (GA), while reaching nearly 100% in infants 
born at < 29 weeks GA or having birth weight < 1 kg [145]. AOP is commonly treated 
with methylxanthines such as caffeine (1, 3, 7-trimethylxanthine) and theophylline (1, 3-
dimethylxanthine) as respiratory stimulants.  
 
 
Application of caffeine in patients with apnea of prematurity 
 
 Being the current first-line pharmacotherapy for the treatment of AOP, caffeine 
has been used frequently for more than three decades [99]. Caffeine therapy is believed to 
reduce the number of apnoeic episodes, the duration of respiratory support of continuous 
positive airway pressure (CPAP), the incidence of bronchopulmonary dysplasia (BPD) 
and, from a long-term view, the morbidity of neurodevelopmental disability in very low 
birth weight premature infants [144-146]. In most cases, its administration to neonates 
and infants was empirical and off-label, the first and to date the only commercially 
available caffeine product, CAFCIT®, was approved by the U.S. Food and Drug 
Administration (FDA) at the end of the last century. This medication is labeled for the 
short-term treatment of AOP in premature infants 28-33 weeks GA. Therefore, dosing 
guidance remains empiric and variable for those extremely low birth weight (ELBW) 
infants (birth weight < 1000 g), which are also the youngest premature neonates (23 < 
GA < 28 weeks) [147]. The percentage of infants who are ELBW and very low birth 
weight (< 1500 g) has steadily been increasing in the last ten years. A new cohort of 
neonates, so-called fetal infants, whose birth weight is < 500 g, is also growing. This 
increase might be associated with multiple reasons, such as: 
 

• Increased incidence of very premature birth is associated with multiple 
pregnancies and multiple births caused by assisted reproductive technology 
(ART); 

 
• Improved neonatal survival due to technological advancement in perinatal and 

neonatal care; and 
 

• Progress in the medical management, increases in early cesarean section and 
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induction of labor due to pregnancy complications or health problems. 
 
 Because of the increasing survival of ELBW infants, the burden of morbidity 
from AOP and its associated BPD is growing. However, there is only a limited amount of 
pharmacokinetic (PK) data for caffeine available for this newly emerging population of 
premature infants. This population is susceptible to developmental changes that can affect 
the disposition of drugs. Many neonatal conditions in physiology and pathology are 
unique, and their pharmacokinetic characteristics have rarely been investigated. As 
discussed in Chapter 1, linear extrapolation of dosing regimens based on body weight or 
body surface area may not be appropriate and is frequently associated with adverse 
events and lack of efficacy. To develop a sound, scientifically-based caffeine 
pharmacotherapy in premature infants is therefore urgently needed for this patient 
population to ensure safe and effective treatment of AOP. A preferable approach for 
pharmacokinetic studies in pediatrics is the population pharmacokinetic modeling 
approach [73]. The PopPK approach allows for utilizing sparse and unbalanced data 
collected during routine clinical care, including therapeutic drug monitoring (TDM), from 
individual patients to determine factors that may influence the drug behavior in the 
human body. Therefore, using the PopPK method can help to overcome the scientific, 
logistic and ethical limitations of traditional PK studies in premature neonates. 
 
 
Objective 
 
 A number of clinical studies using caffeine have been performed in patients with 
AOP. Caffeine is generally considered a safe and effective medication in the NICU. 
However, the optimal dose is still not known. Future studies will focus on maximizing 
therapeutic benefits while minimizing toxicity through a series of dose selection analyses 
[101, 148]. The objectives of the current study were: (1) to develop a PopPK model of 
caffeine in premature neonates, (2) to determine the typical PopPK parameters and 
associated between-subject variability of caffeine, (3) to assess and identify potential 
sources of variability of PK behavior for caffeine among premature neonatal patients 
throughout infancy and (4) to use this PopPK model to further facilitate the development 
of optimal dosing regimens through simulation—particularly, to correlate steady state 
concentrations with response at different dosing regimens for various age/weight groups. 
 
 

Methods 
 
 
Approval 
 
 The current study received approval by the Eastern Virginia Medical School 
Institutional Review Board, Norfolk, VA. 
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Study design and patient population 
 
 A total of 560 caffeine concentration measurements were gathered from 88 
hospitalized patients with the main diagnosis of apnea of prematurity from July 2008 to 
December 2008 in the Neonatal Intensive Care Unit of Children’s Hospital of the King’s 
Daughters, Norfolk, VA. All pharmacokinetic data were obtained retrospectively from 
the medical records and routine therapeutic drug monitoring. The subjects included in the 
PopPK analysis received repetitive intravenous (IV) and/or oral administration of 
caffeine. Caffeine was given as an initial IV loading dose over 30 minutes, followed by 
maintenance doses every 12 or 24 hour via 10 minutes IV infusion or orogastric 
administration. Loading doses ranged from 6.5 to 9.5 mg/kg, while maintenance doses 
ranged from 3.1 to 28.6 mg/kg/day. All blood PK samples were drawn before the 
morning drug administration. All patients had reliable dosing and sampling collection 
date and time information recorded and at least one associated measurable concentration 
of caffeine. The covariates collected for each patient included birth weight (BW), body 
weight (WT), GA, postnatal age (PNA), postconceptional age (PCA), gender, race and 
the use of respiratory support. Demographic characteristics and relevant clinical profiles 
of pharmacokinetic data were collected and precisely documented. 
 
 
Assay methodology  
 
 Plasma concentrations of caffeine were determined in the clinical laboratory at 
Children’s Hospital of the King’s Daughters with a homogenous spectro-photometric 
method using a Syva enzyme-multiplied immunoassay technique performed on an 
ARCHITECT® c8000™ analyzer by Abbott Diagnostics (Dallas, Texas). The assay range 
was from 1.0 mg/L to 30.0 mg/L, while a dilution would be performed on the PK samples 
with a concentration > 30.0 mg/L. The inter-assay coefficient of variation was 4.2% at a 
concentration level of 11.0 mg/L. 
 
 
Population pharmacokinetic analysis 
 
Computer and software 
 

The population pharmacokinetic analysis of caffeine was carried out by nonlinear 
mixed-effects modeling using a NMQual 6.4.1 (Metrum Institute, Augusta, Maine) 
installation of NONMEM version VI, Level 2.0 (ICON Development Solutions, Ellicott 
City, Maryland) with a GNU Fortran 77 (g77) version 2.95. Data summary and figures 
were prepared with Xpose [149], Census Version 1.0 [150], R 2.8.1 (http://www.r-
project.org), or SAS 9.1. 
 
Structure model development 
 
 The first order conditional estimation (FOCE) method within NONMEM was 
used for the estimation in the PopPK analysis. A one-compartment model based on the 
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available literature report was used to describe the caffeine concentration-time profile 
[151-153]. The structural model to be tested was selected as a one-compartment model 
with first-order absorption and first-order elimination without lag time. Since the 
concentration data were collected during routine drug monitoring and consisted of trough 
data, no information from the absorption phase after oral administration was available for 
the evaluation of absorption rate constant (ka); therefore, a fixed value of 10 hr-1 was 
employed to represent its rapid absorption suggested in the literature[152-154]. Caffeine 
concentration data were log transformed prior to the PopPK analysis. Between-subject 
variability on the pharmacokinetic parameters of caffeine was assumed to follow a log-
normal distribution and was modeled with an exponential error model.  
 

P = θ ×  (𝑒𝑒)𝜂𝜂  
 

η ~N (0, ω2) 
 
 Where θ represents the typical value of a population pharmacokinetic parameter, 
P is the true but unknown value of θ in the individual. η represents the population 
parameter variability in model parameters, independently and randomly distributed with 
mean zero and variance ω2. Stepwisely, between-subject variability on all PK parameters 
was added or removed from the model. Residual error was initially modeled with an 
additive error model on the log-transformed concentration data. 
 

ln(Cobs,ij) = ln(Cpred,ij) + εij 
 

εij ~N (0, σ2) 
 
 Where Cobs,ij is the ith observed concentration in the jth subject, Cpred,ij is the ith 
model predict concentration in the jth subject and εij is the deviation of ln(Cobs,ij) from 
ln(Cpred,ij. εij). ε is a normally distributed random variable with an average value of 0 and 
variance of σ2. 
 
 A diagonal covariance matrix for the between-subject variability was initially 
used. After the initial diagonal covariance matrix was identified for the base model, off-
diagonal correlations were also tested if a scatter plot correlation matrix indicated 
significant correlation between individual parameters calculated by the posterior 
conditional estimation (POSTHOC) technique within NONMEM. Once the between-
subject variability covariance matrix was determined, the residual error model was also 
further evaluated with a proportional and additive error model on the log-transformed 
concentration data. 
 
 Initially, the basic model was evaluated without any covariates. Due to the fact 
that demographic factors such as weight and age play a significant role in determining 
pediatric pharmacokinetic parameter estimates and exploratory modeling results, body 
weight was included a priori during the base model development, along with fixed 
allometric exponents of 0.75 and 1 for clearance (CL) and volume of distribution (V), 
respectively. Fixing one of the covariate-parameter relationships to an allometric 
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expression allows estimation of effects of other covariates if these covariates are highly 
collinear [73]. The use of these coefficients is supported by fractal geometric concepts 
and observations from diverse areas in biology [39, 73]. 
 

CL = θ𝐶𝐶𝐶𝐶  ×  ( WT
Median

)0.75 
 

V = θ𝑉𝑉  ×  ( WT
Median

)1 
 
Covariate model development 
 
 Once the base model was identified, the influence of subject-specific covariates 
on the estimated PK parameters was evaluated. The covariates screened included PNA, 
GA, PCA, BW, low gestational factor (LGA), gender and race. Prior to the covariate 
model development, a scatter plot correlation matrix was developed to identify any high 
intercorrelation among covariates.  
 
 For continuous covariates, scatter plots of individual PK parameter estimates 
against covariates overlaid with a LOESS smooth line were used to help identify 
functional relationships. For categorical covariates, box and whisker plots of individual 
PK parameters for each of the groups were used to identify differences between groups. 
Continuous covariates were modeled using proportional or linear relationships in a 
median-centered manner: 
 

P = θ1 + θ2 × (COV - Median) 
 

P = θ1 + θ1 × θ2 × (COV - Median) 
 
 Where θ1 represents the typical value of a PK parameter in an individual with the 
median value for the covariate (COV) and θ2 represents the coefficient for the 
relationship with the covariate. P is the individual pharmacokinetic parameter. If the 
scatter plot between the covariate and the individual PK parameter indicated a log-linear 
or exponential relationship, the following power model was used: 
 

P = θ1  ×  ( COV
Median

)θ2  
 

P = θ1 +  ( COV
Median

)θ2  
 
 

 Combinations of proportional, linear and power models were developed as 
needed. Categorical covariates were modeled using a fractional change model:  
 

P = θ1 × (1 + θ2 × COV) 
 

Where COV has either the value of 0 or 1. 
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 The covariate model was developed using a stepwise forward addition and 
backward elimination approach. First, covariates were added to the base model 
incrementally in a univariate fashion and were tested to determine whether there was a 
statistically significant decrease in objective function value of 3.84 (p < 0.05) based on 
the Chi-square test with one degree of freedom. Covariates that demonstrated significant 
PopPK model improvement were considered for the next iteration of covariate model 
development. The covariate model demonstrating the greatest improvement in the PopPK 
model was incorporated into the base PopPK model while remaining covariates were re-
evaluated incrementally. This process was repeated until none of the remaining covariates 
provided significant improvement to the PopPK model. 
 
 Following determination of the fully parameterized PopPK model, a backward 
elimination approach was used to evaluate if all covariates included in the full model 
continued to provide significant influence on PK parameter estimations. Thus the 
included covariates were sequentially removed from the full model to determine if there 
was significant model deterioration. A more stringent p-value of 0.01, based on the Chi-
square test with one degree of freedom, was used during the backward elimination 
process to avoid false-positives. This process was repeated until the model contained the 
minimum number of parameters that produced no significant PopPK model deterioration.  
 
 Covariate model development also was guided by considering physiological and 
pharmacological mechanisms, reduction in the between-subject variability on the 
corresponding PK parameters and improvement of goodness-of-fit plots. 
 
Model selection 
 
 The following criteria were applied during model development to identify an 
improved model: 
 

• A significant reduction in the objective function value based on the likelihood 
ratio test. A decrease of > 3.84 points in objective function value was 
considered significant (p < 0.05) for addition of one model parameter.  
 

• The improvement in pharmacokinetic parameter estimation, such as a decrease 
in the estimated standard error for model parameters, a decrease in the 
magnitude of the between-subject variability for pharmacokinetic parameters 
and/or a decrease in the magnitude of the residual error. 
 

• Evaluation of the goodness-of-fit plots, including a less systematic or narrower 
distribution of individual predicted versus observed dependent variable and a 
random distribution in the residuals/weighted residuals versus the predicted 
dependent variable, versus time or versus covariates. 
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Population pharmacokinetic model qualification 
 
Bootstrap analysis 
 
 A nonparametric bootstrap analysis was performed to evaluate the model 
performance internally. First, 500 bootstrap data files were created from the original 
NONMEM data file with repeatedly random sampling with replacement, consisting of the 
same patient sample size as the original NONMEM data file. Then the population 
parameters were estimated for each of the 500 bootstrap data files using the final 
covariate model. The same optimization method was used in the estimation as that in the 
final model. Based on these estimations, the median and 95% confidence intervals (CIs) 
for each parameter were derived from the successfully converged bootstrap runs using the 
percentile method and compared with the estimates of the original index dataset. 
 
Visual predictive check 
 
 The predictive performance of the final covariate model was assessed by 
conducting a visual predictive check. Using the final PopPK model with the parameter 
estimates and their distributions, 500 simulations were performed with the original 
dataset to preserve the covariate vector. The 90% prediction confidence intervals (5% and 
95% percentiles) were determined based on the simulated plasma concentrations data. 
Since actual times were used for analysis, intervals were binned around the most frequent 
times after dose as determined by the data structure of the original dataset. Prediction 
confidence intervals were plotted and overlaid with the observed concentrations. If 
approximately 90% of the observed values judged by visual inspection laid within the 
90% confidence intervals for the simulated concentrations with comparable spread, then 
the PopPK model was considered to have strong predictive value.  
 
Posterior predictive check 
 

As a posterior predictive check, a separate Monte Carlo simulation was performed 
in NONMEM with six representative subjects chosen from the model building dataset. 
Dosing regimens used in this simulation were selected based on a previous dose–
optimization analysis. The results were then evaluated and compared to the observed 
caffeine levels. 
 
Shrinkage  
 
 The shrinkage for the individually estimated concentrations (epsilon shrinkage) 
and parameters (eta shrinkage) were calculated [155]. Epsilon shrinkage was calculated 
as 1 – SD (IWRES), where IWRES is the individual weighted residual. Eta shrinkage was 
calculated as 1 – [SD (EBEs)]/ω, where EBEs stand for empirical Bayes estimates (or 
individual POSTHOC parameters) and ω is the population model estimate of the SD in 
eta. Although no formal criterion exists, a level of < 0.3 was used to conclude “no 
relevant shrinkage.”  
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Dose-optimization study 
 
 The final covariate PopPK model for caffeine (and its parameter estimates) was 
subsequently applied to a dose-optimization simulation analysis. Various dosing levels 
with 12 or 24 hour dosing intervals were evaluated through Monte Carlo simulations 
using Trial Simulator Version 2.2 (Pharsight Corporation, Mountain View, CA). 
 
 In a meta-design, all subjects were divided into 11 sub-groups based on their body 
weight and PCA. Twelve treat arms at 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14 mg/kg/day 
caffeine base with dosing intervals of 12 or 24 hours given for 15 days were selected in 
the evaluation based on a preliminary simulation analysis. The covariate distributions for 
the simulated PCA and body weight were consistent with those in the observed caffeine 
data set in terms of mean, standard deviation and range. A joint distribution between PCA 
and WT for each sub-group was employed in the covariate model. Correlation 
coefficients directly derived from the caffeine data set were used in the model building to 
account for the slight difference in collinearity between PCA and body weight in each 
sub-group. For each evaluated scenario, 400 replicates were generated. Then the peak and 
trough concentrations on the 15th day for each dosing regimen were summarized and 
compared to the therapeutic target concentrations of caffeine. The probabilities of 
achieving the desired therapeutic target were estimated for each group. 
 
 

Results 
 
 
Pharmacokinetic data 
 
 The final caffeine analysis dataset consisted of a total of 560 PK samples 
collected from 88 subjects with a GA of 23–31 weeks and a diagnosis of apnea of 
prematurity. The dosing and baseline demographics of the subjects are summarized in 
Table 4-1. The duration of caffeine treatment ranged from 9 to 107 days, with a median 
of 48 days. The median number of concentration measurement provided is 6 per subject. 
The majority of patients (70 out of 88 subjects) contributed 4-10 PK observations, while 
13 subjects had 1-3 PK observations and 5 subjects had 11-17 PK observations. It should 
be noted that only 3 subjects had a single PK observation (Figure 4-1). 
 
 
Structural model 
 
 One-compartment models with very fast first-order (ka = 10 h-1) absorption, and 
first-order elimination were tested using the subroutines ADVAN2 and TRANS2 within 
NONMEM. Various combinations of between-subject variability (exponential) on CL, V 
and F1 with or without off-diagonal correlation were explored. The residual error term 
was initially modeled as an additive error on the log-transformed concentrations. The 
proportional and additive residual error model was also tested once the between-subject   
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Table 4-1. Subject dosing and baseline demographics summary 
 

Characteristics N Median Range 

Gender (male/female) 38/50   
Race (Caucasian/Black/Other) 28/50/10   
Caffeine dose (mg/kg/day)  7.7 3.1-28.6 
Duration of caffeine therapy (day)  48 9-107 
Caffeine concentration (mg/L) 560 24.4* 7.9-42.7 
Concentration measurements per patient  6 1-17 
PNA (day) 88 39 1.0-116 
GA (week) 88 26 23-31 
PCA (week) 88 32 24-42 
BW (kg) 88 0.84 0.38-1.7 
WT (kg) 88 1.3 0.36-3.0 

 
N = number of subjects. 
* Presented as mean. 
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Figure 4-1. Histogram of frequences of number of caffeine concentrations 
contributed per subject 
 
Red vertical line indicates the median of the number of PK samples.  
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variability had been selected. The structural base model was finally determined as a one 
compartment model with no lag-time, first-order absorption, first-order elimination and 
between-subject variability expressed as exponential terms on CL, V and oral 
bioavailability (F1). Residual error was modeled as an additive error on the log-
transformed concentrations. The models were evaluated based upon the objective 
function value, goodness-of-fit plots, parameter estimates, precision of parameter 
estimates, between-subject variability and residual error.  
 

Size and maturation-related covariates (GA, PNA and PCA) are usually two 
important aspects associated with pediatric analysis, and collinearity is commonly 
observed (Figure 4-2). In neonatal studies, both covariates have profound but 
indistinguishable impact on parameter estimation. The incorporation of allometric size 
adjustment by weight centered by the median value of 1.5 kg for both CL and V was 
evaluated by two approaches, a priori inclusion with fixed exponents to 0.75 for CL, 1 
for V and estimation as part of the covariate model building. Both approaches gave 
significant reductions (P < 0.001) of the objective function value, 438.5 and 558.8, 
respectively. The allometric exponential estimates and subsequent parameter estimate of 
PCA effect on CL are listed in Table 4-2.  
  
 The pros and cons of these two approaches for size adjustments in PopPK 
analyses have been well discussed in the literature, particularly in a situation where 
collinearity exists among the studied covariates [39, 73, 156]. To allow for the evaluation 
of the influence of other covariates that are collinear with WT on the PK parameters of 
caffeine, the allometric size adjustment by a priori fixing the exponents to 0.75 for 
weight on CL and 1 for weight on V was finally decided on for use in the base model. 
The PK parameter estimates of caffeine obtained from the base model are given in 
Table 4-3. 
 
 
Covariate model 
 
 Continuous covariates, including PNA, PCA, GA and BW, were tested in a linear 
manner or a power function normalized with the median value on CL, V and F1. 
Categorical covariates including gender and race were tested on CL, V and F1 in a 
fractional change manner.  

 
 In the first forward addition step, PCA on CL (power function), low gestational 
age (LGA) factor on CL, and LGA on V were found to affect the model fit significantly. 
PCA on CL showed the greatest reduction (-160.4) in objective function value compared 
to the base model and was then chosen as the reference model for Step 2. Various LGA 
factors (when GA = 24, 25, 26, 28, 30 weeks) were evaluated, but only LGA < 25 weeks 
was found to have a significant effect on both CL and V.  
 
 In the second forward addition step, only those covariates that were found 
significant in the first step were tested. LGA on CL and LGA on V were significant. 
Among them, LGA on CL produced the greatest decrease in objective function value 
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Figure 4-2. Matrix of continuous covariates and PK parameters of the base model  
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Table 4-2. Population pharmacokinetic parameters of caffeine obtained from the allometric model with estimated or fixed 
exponentials 
 

Model Parameters Pre-base Modela  Pre-base Modela + 
PCA on CL  Base Modelb Base Modelb + 

PCA on CL 

Clearance (CL, L/hr)  0.0169 (15.3%) 0.0164 (10.4%) 0.0144 (14.9%) 0.0166 (10.3%) 

Weight on CL (power) 1.2 (0.057)c 0.736d 0.75 0.75 

PCA on CL - 1.88d - 1.91 (0.17)c 

Volume of distribution (V, L)  1.15 (56.5%) 1.19 (52.7%) 0.981 (52.6%) 1.01 (45.8%) 

Weight on V (power)  1.45 (0.218)c 1.36d 1 1 

Absolute bioavailability (F1) 0.97 (13.1%) 1.01 (13.5%) 0.824 (14.8%) 1.02 (13.9%) 
 
Parameter estimates are presented as mean (between-subject variability, %). 
a Exponential of WT on CL and V were estimated. 
b Exponential of WT on CL and V were fixed. 
c Presented as mean (standard error). 
d Standard error not available. 
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Table 4-3. Population pharmacokinetic parameters of caffeine obtained from the 
base model 
 

Model Parameters Parameter Estimate RSEa BSVb (CV%c) 

Clearance (CL, L/hr)  0.0144 2.22% 14.9% 

Weight on CL (power)  0.75 NA NA 

Volume of distribution (V, L)  0.981 7.57% 52.6% 

Weight on V (power)  1 NA NA 

Absolute bioavailability (F1) 0.824 2.99% 14.8% 

Residual error  0.0421 8.53% 20.5% 
 
a Relative standard error (RSE), calculated as (Standard Error/Estimate)*100 from 
NONMEM® results. 
b Between-subject variability (BSV). 
c Coefficient of variation (CV%), calculated as√𝜔𝜔2  ∗ 100, where ω2 is the between-
subject variance estimate. 
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(∆OFV = -14.3). 
 
 In the third step, only those covariates that were found significant in the second 
step were tested. In the third forward addition step, LGA on V was found significant 
(∆OFV = -5.13). Thus this model was then considered the fully parameterized model; it 
consisted of the statistically significant relationships of a body weight effect on CL 
(positive power relationship), a PCA effect on CL (positive power relationship), a low 
GA effect on CL (positive fractional change), a body weight effect on V (linear 
relationship) and a low GA factor on V (positive fractional change). 
 
 Removal of each of these covariates led to a significant deterioration of the 
model, as indicated by an increase of more than 6.64 points in the OFV compared to the 
full model. Therefore, each relationship was considered significant. The final model was 
a one-compartment model with no lag-time, between-subject variability expressed as 
exponential terms on CL, V and F1, and having the exponential residual error model and 
covariate effects listed in the previous paragraph. 
  
 Additionally, low birth weight factor (LBW) (BW = 0.6, 0.8, 0.9, 1.0, 1.2 kg) and 
respiratory support (5 rank levels of oxygen support) were also tested as potential 
covariates but did not appear to be significant. The only covariates found to significantly 
(p < 0.01) affect the PK parameters beyond body weight were PCA on CL and a factor < 
25 weeks of gestational age at birth (LGA) on CL and V. 
 

The final models for clearance and volume of distribution are as follows:  
 

CL (L/hr) = 0.0164 ∗ (𝑊𝑊𝑊𝑊
1.5

)0.75 ∗  �𝑃𝑃𝑃𝑃𝑃𝑃
32
�

1.96
(∗  1.18, 𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺 < 25 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) 

 
Vd (L) = 0.94 ∗ (𝑊𝑊𝑊𝑊

1.5
)1.0 (∗ 1.57, 𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺 < 25 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) 

 
𝐹𝐹 = 1.0 

 
 The typical patient in the studied premature neonate population, i.e., a patient with 
WT of 1.5 kg, PCA of 32 weeks, and GA > 25 weeks, was estimated to have a CL of 
0.0164 L/hr and a V of 0.94 L. That is equivalent to 0.0109 L/kg/hr and 0.63 L/kg for CL 
and V, respectively. The population typical value for absolute bioavailability was 
estimated to be close to 1.  

 
 The PK parameter estimates of caffeine obtained from the final model are given 
in Table 4-4. Selected goodness-of-fit plots are presented in Figure 4-3, Figure 4-4, 
Figure 4-5, Figure 4-6, and Figure 4-7. 
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Table 4-4. Population pharmacokinetic parameters of caffeine obtained from the 
final model 
 

Model Parameters Parameter Estimate RSEa BSVb (CV%c) 

Clearance (CL, L/hr)  0.0164 2.29% 8.9% 

Weight on CL (power)  0.75 NA NA 

PCA on CL (power) 1.96 8.72% NA 

Low GA on CL (fraction) 1.18 3.46% NA 

Volume of distribution (V, L)  0.94 7.51% 42.3% 

Weight on V (power)  1 NA NA 

Low GA on V (fraction) 1.57 16.2% NA 

Absolute bioavailability (F1) 1.0 3.31% 14.2% 

Residual error  0.0318 8.84% 17.8% 
 
a Relative standard error (RSE), calculated as (Standard Error/Estimate)*100 from 
NONMEM® results. 
b Between-subject variability (BSV). 
c Coefficient of variation (%CV), calculated as√𝜔𝜔2  ∗ 100, where ω2 is the between-
subject variance estimate. 
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(a)   (b)        (c) 

 
 
 
Figure 4-3. Goodness-of-fit plots for the structural model, the base model and the 
final model 
 
Population (upper panel) and individual (lower panel) predicted versus observed caffeine 
concentrations obtained from the structural model (a), base model (b), and final model 
(c).   
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Figure 4-4. Conditional weighted residuals versus population predicted 
concentrations, observed concentrations, time after dose and subject ID in the final 
covariate model 
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Figure 4-5. POSTHOC individual estimates of clearance and its variance term 
(ETA1) obtained from the final model versus covariates 
 
Upper panel: scatter plots of POSTHOC individual estimates of clearance versus 
covariates including body weight, postconceptional age, and gestational age. Lower 
panel: scatter plots of variance term for clearance (ETA1) versus covariates, including 
body weight, postconceptional age and gestational age, obtained from the final model.  
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Figure 4-6. POSTHOC individual estimates of volume of distribution and 
variance term (ETA2) obtained from the final model versus covariates 
 
Upper panel: scatter plots of POSTHOC individual estimates of volume of distribution 
versus covariates, including body weight and gestational age. Lower panel: scatter plots 
of variance term for volume of distribution (ETA2) obtained from the final model versus 
covariates including body weight and gestational age.  
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Figure 4-7. Caffeine plasma concentration-time profiles in selected sixteen 
patients  
 
Patient ID as indicated. Plots of population predicted, individual predicted and observed 
concentrations versus time. Measured plasma concentrations versus time are indicated by 
open circles; model-based population and individual predicted concentration-time 
profiles by dashed and solid lines, respectively. 
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Model diagnostics 
 
Nonparametric bootstrap 
 
 Results from the bootstrap analysis of 500 datasets indicated a stable final model. 
100% bootstrap runs attained successful minimization. Table 4-5 shows that the 
difference in parameter estimates between the original NONMEM input dataset and the 
bootstrapped datasets were generally less than 5%, indicating good stability of the final 
model. Only the estimation of BSV on V (�(𝜔𝜔2) x100%) from the bootstrap was 11.5% 
lower than that from the final model; however, its 95% CI was narrower and completely 
covered by the 95% CI of the same estimate in the final model. The 95% confidence 
intervals for the covariate effects did not overlap with 0, indicating the statistical 
significance of the covariates included in the final model. The 95% confidence intervals 
were relatively tight, also indicating good precision of all parameter estimates. 
 
Model predictability 
 
 Visual predictive check plots were constructed to evaluate the model 
predictability. Figure 4-8 shows the observed caffeine concentrations, together with the 
median and predicted 90% CIs from 500 simulation data sets based on the final model. 
The visual predictive check confirmed that a majority of the observed values were within 
the 90% CI of the simulated concentrations by time with similar spread. Therefore, the 
final full model is considered to be predictive for the model development dataset. 
 
Shrinkage  
 
ETA shrinkage and epsilon shrinkage were calculated for the base model and final model.  
The shrinkage evaluation results are presented in Table 4-6. As mentioned earlier in this 
section, the dataset used in the PopPK analysis included 88 patients who contributed 1-17 
PK observations. While the majority of patients contributed 4-17 PK observations, 13 
patients had only 1-3 PK observations. When data are uninformative, the variance for the 
distribution of individual parameter estimates will shrink towards zero and eta shrinkage 
will be close to one. Meanwhile, individual predicted concentrations will shrink towards 
the corresponding observed concentrations and individual weighted residual will thus 
shrink towards zero, resulting in a high epsilon shrinkage [157]. As expected, some 
shrinkage was observed for eta and epsilon, which is consistent with the sparse data used 
in the current analysis. While the value of using individual estimates in the diagnostic 
plots is considered to decrease in the case of significant shrinkage (eta and epsilon), the 
population parameter estimation is not affected. Additionally, less reliance on the 
individual estimate-based diagnostics should be applied in the model building process 
when a significant shrinkage is observed for eta and epsilon [157]. In this analysis, model 
selection did not solely rely on the diagnostic plots using individual estimates; instead, 
multiple model selection criteria were used to determine the best model, as mentioned 
earlier in the methods section. Meanwhile, other types of diagnostics, including 
conditional weighted residuals and simulation-based diagnostics, were used to facilitate 
the selection of an improved model. Thus, the effects of moderate eta and epsilon  
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Table 4-5. Comparison of parameter estimates after modeling the model building dataset and the 500 bootstrap derived 
datasets for the final model 
 

Model Parameters 
    Final Model          Bootstrap  Difference 

in Estimatea 
(%) 

 Parameter 
Estimate 95% CI  Parameter 

Estimate 95% CI  

Clearance (CL, L/hr)   0.0164 (0.0157, 0.0171)  0.0164 (0.0157, 0.0171)  0.0% 

BSV on CL (%CV)  0.00793 (8.9%) (0.00364,0.0122)  0.00755 (0.00341, 0.0127)  - 4.8% 

Weight on CL (power)  0.750 NA  NA NA  NA 

PCA on CL (power)  1.96 (1.62, 2.30)  1.97 (1.64, 2.33)  0.5% 

Low GA on CL (fraction)  1.18 (1.10, 1.26)  1.17 (1.09, 1.25)  -0.8% 

Volume of distribution (V, L)  0.940 (0.802, 1.08)  0.926 (0.775, 1.07)  -1.5% 

BSV on V (%CV)  0.179 (42.3%) (0.0394, 0.319)  0.1585 (0.000305, 0.288)  -11.5% 

Weight on V (power)  1 NA  NA NA  NA 

Low GA on V (fraction)  1.57 (1.07, 2.07)  1.59 (1.16, 2.29)  1.3% 

Absolute bioavailability (F1)  1.00  (0.963, 1.10)  1.03 (0.970, 1.10)  3.0% 

BSA on F1 (%CV)  0.0201 (14.2%) (0.00732,0.0329)  0.0199 (0.00879, 0.0345)   

Residual error   0.0318 (0.0263, 0.0373)  0.0314 (0.0262, 0.0373)  -1.3% 

 
a Calculated as (bootstrap value – final model value) / final model value *100.  



www.manaraa.com

84 
 

 
 
 
Figure 4-8. Visual predictive check for the final caffeine population 
pharmacokinetic model.  
 
The red solid line and grey dotted lines indicate the median and 90% confidence interval 
of predicted concentrations determined from 500 Monte Carlo simulations with the final 
model. Open circles indicate observed caffeine concentrations in the model building 
dataset. 
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Table 4-6. Shrinkage evaluation for the base and final model 
 
Parameter Base Model Shrinkage Final Model Shrinkage 
ETA1 (CL) 0.209 0.324 
ETA2 (V) 0.367 0.338 
ETA3 (F1) 0.417 0.356 
Epsilon 0.776 0.778 

 
 
shrinkage on the modeling results are considered to be limited.  
 
 
Dose-optimization study 
 
 A description of the trial simulation cohorts is summarized in Table 4-7. The 
simulated subjects in each cohort had the same demographic characteristics as the infants 
in the model building dataset of the caffeine PopPK analysis, except for one hypothetical 
subgroup. Infants with a body weight > 2 kg and a PCA >28 but ≤ 32 weeks were not 
available in the model building dataset but were considered clinically relevant. Therefore 
this group was also included in the simulation study. Consistent with the original caffeine 
dataset, covariate models were defined with a range of 24 to 42 weeks for PCA [mean = 
32 (± 3) weeks] and a range of 0.36 to 3 kg for body weight [mean = 1.3 (± 0.45) kg]. A 
joint distribution between PCA and WT for each studied subpopulation group was 
derived from the model building dataset for the caffeine population analysis and modeled 
with a correlation coefficient of 0.36 (range: 0.209 - 0.407). Subjects following the above 
covariate distribution were generated by using the Trial Simulator. The simulation was 
stratified so that 20% of the simulated patients had GA < 25 weeks, while 80% simulated 
patients had GA ≥ 25 weeks. 
 
 Model-based simulation was used to evaluate various candidate dosing regimens 
with regard to a desired therapeutic target concentration. However, there is currently no 
consensus on the desired caffeine target range in the pediatric community, and thus 
targets may vary from hospital to hospital and physician to physician. Based on a 
literature review and the CAFCIT® package insert, the therapeutic targets to attain the 
satisfactory efficacy and minimize toxicity were defined for the current analysis as: (1) 
maintaining a trough caffeine concentration at steady state between 8 and 20 mg/L; and 
(2) maintaining a peak concentration ≤40 mg/L, since caffeine concentrations > 50 mg/L 
are considered to cause critical toxicity [113, 158]. Maintenance dose recommendations 
used for posterior check were derived from the frequencies with which the therapeutic 
targets were achieved in 400 simulated patients for each cohort. Figure 4-9 illustrates the 
simulated caffeine peak and trough concentrations sorted by PCA-body weight group and 
daily dose.  
 
 Based on the simulated dose escalation study results using Trial Simulator, the
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Table 4-7. Description of the simulated cohorts 
 

PCA 
(week) 

Weight 
(kg) 

LGA a 
(%) 

Dose b 
(mg/kg) 

Interval 
(hour) 

Duration 
(day) 

Sample 
Size PK Target c 

23 < PCA ≤ 28 0.36 < WT  ≤ 1 
1 < WT  ≤ 2 20 2-12 12 or 24 15 400 CSS,trough 8-20 mg/L 

CSS,peak ≤ 40 mg/L 

28 < PCA ≤ 32 
0.36 < WT  ≤ 1 

1 < WT  ≤ 2 
2 < WT  ≤ 3 

20 2-12 12 or 24 15 400 CSS,trough 8-20 mg/L 
CSS,trough ≤ 40 mg/L 

32 < PCA ≤ 36 
0.36 < WT  ≤ 1 

1 < WT  ≤ 2 
2 < WT  ≤ 3 

20 2-14 12 or 24 15 400 CSS,trough 8-20 mg/L 
CSS,peak ≤ 40 mg/L 

36 < PCA ≤ 42 
0.36 < WT  ≤ 1 

1 < WT  ≤ 2 
2 < WT  ≤ 3 

20 2-14 12 or 24 15 400 CSS,trough 8-20 mg/L 
CSS,peak ≤ 40 mg/L 

 
a LGA (%): percent of subjects with low gestational age (< 25 weeks) at birth.   
b Dose (mg/kg): caffeine base.  
c Steady state is reached after 15 days of caffeine treatment when half-life is less than or equal to 70 hours. CSS,trough and CSS,peak 
represent the simulated trough and peak concentrations on the day 16. 
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Figure 4-9. Trough and peak levels of caffeine concentrations at the steady state in dose-finding simulation study 
 
Red solid lines indicate the predetermined therapeutic target range for trough concentration of caffeine: 8-20 mg/L.  
Blue dash lines indicate the predetermined therapeutic target for peak concentration of caffeine: 40 mg/L. 
Orange dash lines indicate the toxicity level of caffeine: 50 mg/L. 
Green box plots indicate maintenance dose level of caffeine base 2.5mg/kg QD, which is equivalent to 5 mg/kg CAFCIT® (caffeine 
citrate) approved by the FDA for short-term treatment in premature infants with 28-33 weeks GA. 
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Figure 4-9.    Continued   
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Figure 4-9.    Continued   
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probability of achieving the therapeutic target was calculated for each group and the 
results are summarized in Table 4-8. As illustrated in this table, a higher dose per body 
weight appeared to be needed to reach the predetermined target concentrations with a 
decrease of body weight when PCA was > 23 weeks but ≤ 28 weeks. Similar trends were 
also observed for other three study groups. This was in agreement with the fact that low 
body weight is usually correlated with low gestational age, and thus may lead to a 
relatively high clearance per kg body weight for caffeine. Meanwhile, a higher dose per 
body weight is generally needed with an increase in PCA within the same range of body 
weight as shown in this figure. Maintenance dose recommendations were derived based 
on the criterion that the predetermined target range in the simulated premature infants 
was achieved with a frequency > 99.5%. Table 4-9 shows that the selected maintenance 
doses for specific age and body weight groups were consistent with trends as observed in 
Table 4-8. While both 12-hour and 24-hour dosing intervals were evaluated in the dose-
finding simulation analysis, dosing every 24 hours can reach the predetermined target and 
it was selected, since it is more convenient for patient care than a twice daily dosing 
regimen. 

 
 On the basis of the dose-finding simulation results, plasma PK profiles of caffeine 
in six representative patients after 15 days of dosing were then simulated (n = 500 
replicates) under the suggested dosing regimens (Table 4-9) using NONMEM. The 
patients were selected so their covariates covered the range of all studied scenarios in 
Table 4-8, except for the hypothetical group – body weights ≥ 2 kg with a PCA between 
28 and 32 weeks, which were not available in the clinical dataset. Simulations were 
performed using the final PopPK model considering individual parameter estimates, 
between-subject variability and residual variability. The median predicted concentration-
time profiles and 90% CIs from 500 replicates were generated for each patient and 
compared, with the observed concentrations from the patients included in the Model 
Building Dataset, who received an empirical and adaptive dosing of caffeine at 5.1-
11.7 mg/kg/day, administered every 12 or 24 hours. As presented in Figure 4-10, the 
estimated caffeine concentrations under the new suggested dosage regimen were lower 
than the observed values. The differences in caffeine concentrations were likely caused 
by the different therapeutic target concentrations. As discussed earlier, the therapeutic 
target in the current dose-optimization simulation analysis was a trough caffeine 
concentration between 8 and 20 mg/L and a steady state peak concentration ≤ 40 mg/L. 
However, the target trough concentrations for the patients included in the Model Building 
Dataset were much higher (20-30 mg/L) than the targets used in the current simulation 
analysis. With the proposed dosing regimens, the predetermined target was well attained, 
and the simulated median trough plasma concentrations were between 8 and 20 mg/L 
throughout the treatment period. 

 
 

The caffeine population pharmacokinetic model 
 
 In the present study, we developed a PopPK model that describes the 
pharmacokinetic characteristics of caffeine in premature infants, covering a GA of 23 to 
31 weeks with a PNA of up to 116 days. Body weight, PCA and a low gestational age 
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Table 4-8. Frequency of Css fall in therapeutic target at the different dose levels of caffeine base 
 

PCA (week) Weight (kg) 
Dose (mg/kg/day) 

2 2.5 3 4 5 6 7 8 9 10 12 14 

23 < PCA <= 28 
WT <= 1 24.5 82.5 99.25 99.75 87.25 29.25 1.75 0 0 0 0 NA 

1 < WT <= 2 74.25 100 100 88.75 20.25 0.25 0 0 0 0 0 NA 
              

28 < PCA <= 32 
WT <= 1 0 9.25 55 99 100 97 70.5 30.25 9.75 0.25 0 NA 

1 < WT <= 2 6 65.25 98.75 100 93.75 50.75 7.75 0 0 0 0 NA 
WT > 2 32.5 97 100 100 64.5 9 0 0 0 0 0 NA 

              

32 < PCA <= 36  
WT <= 1 0 0 NA 65.5 96.5 100 100 94.75 73.5 38.75 4.25 0.25 

1 < WT <= 2 0 2.25 NA 99.5 100 100 78.5 34.75 4.75 1.25 0 0 
WT > 2 0 32 NA 100 100 82 24.25 2.25 0 0 0 0 

              

36 < PCA <= 42  
WT <= 1 0 0 NA 0 54 92.25 99 100 100 100 57.75 6.25 

1 < WT <= 2 0 0 NA 63.75 98.25 99.75 100 100 78.75 38.25 3.5 0.25 
WT > 2 0 0 NA 94 100 100 100 67 22 4.25 0.25 0 

 
PCA = postconceptional age; WT = weight; NA = not applicable. 
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Table 4-9. Suggested intravenous maintenance dose (mg/kg/day QD) for caffeine 
base in premature infants stratified by PCA and body weight 
 

PCA  Body Weight (Kg)  
(week) < = 1 (1,2] > 2 
< = 28 4 3  

(28, 32] 5 4 3 
(32,36] 6 5 4 

> 36 8 6 5 
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Figure 4-10. Simulated caffeine concentration-time profiles in 6 representative 
patients using the dosing regimens suggested in Table 4-9. 
 
Observed caffeine plasma concentrations after adaptive dosing are indicated by open 
circles; blue and gray solid lines represent the median and 90% confidence intervals 
generated from 500 Monte Carlo simulations. 
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< 25 weeks were found to be important predictors explaining the between-subject 
variability of caffeine pharmacokinetics in premature infants receiving caffeine treatment. 
Overall, the BSV of CL decreased from 28.0% to 8.9% with the addition of body weight, 
PCA and low GA factor on CL. Particularly, inclusion of body weight, PCA and low GA 
factor reduced the between-subject variability in CL from 28.0% to 14.9%, from 14.9% 
to 10.3%, and from 10.3% to 8.9%, respectively. The median (range) empirical Bayesian 
estimates of parameters for all individuals were 11.6 (7.1-20.3) mL/hr/kg for clearance 
and 0.67 (0.39-2.28) L/kg for volume of distribution. These results are in agreement with 
those reported in the literature involving premature infants receiving caffeine treatment 
(Table 4-10).  
  
 An allometric model with fixed exponents of 0.75 and 1 was used to model the 
effect of body weight on clearance and volume of distribution. The allometric principle 
has a concrete ecological rationale based on fractal geometry theory and is robust when 
used as size adjustment in pharmacokinetics [39, 159]. This rationale allowed us to 
explore the unique effect of other covariates, despite their collinearity with body weight 
[73]. Body weight explained 46.8% of the reduction in BSV for CL. PCA was 
subsequently found to be another significant covariate of caffeine’s CL, and clearance 
increased nonlinearly with PCA. The addition of PCA on CL explains 30.7% of the 
reduction in BSV for CL. Both PCA and PNA were determined to be significant 
predictors for CL when tested stepwise in the base model during the model building 
procedure. The addition of PCA on CL demonstrated a better improvement in the model 
fit and explained more of the BSV of CL than PNA did. After the addition of PCA on 
CL, PNA did not improve the model fit further and resulted in over parameterization. 
This result is also in accordance with our hypothesis prior to the covariate screening. 
Compared to PNA, PCA is considered more physiologically appropriate [160], especially 
when maturational processes of CL are initiated before birth and/or the study population 
is heterogeneous with respect to GA and PNA at the onset of the pharmacotherapeutic 
intervention. In this case, PCA was expected to contribute more relevant information with 
regard to maturation of drug disposition processes rather than PNA or GA alone.  
 
 A sigmoid maturation model was also investigated to describe the age effect on 
clearance maturation since the maturation process of CYP1A2 could be modeled by this 
Hill type function [161], as seen in the following equation:  

 

Maturation Function = (𝐴𝐴)𝑛𝑛

𝐴𝐴50
𝑛𝑛+(𝐴𝐴)𝑛𝑛

  
 

 Where A represents the age term, such as PCA or PNA; A50 is the age term at 
which clearance is 50% that of the mature value and n is the Hill coefficient. Both PCA 
and PNA were tested but did not result in a successful model fit. There are several 
reasons that might account for this failure. First, this model might better describe those 
maturational progresses triggered by parturition [39]. However, the maturation of 
processes relevant for caffeine’s clearance may start already before birth. Secondly, there 
is no clear information available for the ontogeny of clearance mechanism in the studied 
population. The elimination of caffeine in neonates is not dominated by one pathway,
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Table 4-10. Comparison of pharmacokinetic parameters of caffeine in premature infants in our study and as reported in the 
literature 
 

Reference N  CL 
(mL/h/kg) 

V           
(L/kg) 

T1/2                    
(h) 

Birth Weight 
(kg) 

GA      
(week) 

PNA        
(day) 

PCA   
(week) 

Weight                         
(kg) 

Current study 88 11.6      
(7.1-20.3) 

0.67    
(0.39-2.28) 

40.0      
(16.8-162.1) 

0.84         
(0.38-1.7) 

26       
(23-31) 

39         
(1-116) 

32       
(24-42) 

1.3      
(0.36-3.0) 

Aranda                
et al. [153] 12 8.9        

(2.5-16.8) 
0.92     

(0.48-1.28) 
102.9     

(40.8-231) 
1.11         

(0.69-1.87) 
28.5    

(25-34) 
11.5        

(3-32)   

Gorodischer      
et al. [162] 13 8.5         

(5.8-12.2) 
0.78     

(0.47-1.01) 
65          

(48.2-87.5) 
1.4            

(0.92-2.06) 
30.6    

(25-34) 1-42   

Le Guennec       
et al. [160] 23    1.42           

(0.64-2.35) 
30       

(25-36)    

Thomson           
et al. [163] 60 7.9 0.82    23         

(1-100) 
31       

(25-41) 
1.3       

(0.6-2.9) 
Falcão               

et al. [151] 75 7.6 0.91  0.6-2.0 23-35 1-78 26-38 0.6-2.7 

Lee T.C.              
et al. [164] 89 4.4-5.6 0.86-1.11  1.17         

(0.57-2.31) 
28.2    

(24-31)    

Micallef             
et al. [165] 35    1.34         

(0.66-2.17) 
29.1    

(23-32)    

Saleh Al-Alaiyan 
et al. [166] 80 7.62      

(2.8-30.2) NA NA 1.3           
(0.65-2.26) 

30       
(24-34) 

28         
(5-60) 

34       
(29-40) 

1.63      
(0.98-2.67) 

Lee H.S.              
et al. [167] 18 6.28 *  

(17.5%) 
0.96 **    
(20.3%)  1.12         

(0.68-1.7) 
28.9    

(24-33) NA NA NA 

Charles                 
et al. [152] 110 6.96    

(1.61-22.6) 
0.85    

(0.37-1.76) 
101       

(24.5-371) 
1             

(0.568-1.57) 
27.6    

(24-29) 
12         

(1-45) 
29       

(24-34) 
0.99     

(0.66-1.86) 
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Table 4-10. Continued 
 
* unit (L/h) ** unit (L)  
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instead, complementary pathways keep changing as the maturation of kidney and liver 
proceed, resulting in a complex effect on the overall CL. Thirdly, variation of other 
factors relevant for the disposition of caffeine, such as low albumin levels (binding 
protein), body composition or bilirubinemia may confound estimations of hepatic 
clearance [168, 169]. Another possible reason might be the limited data in this study: 
They are not rich enough to support estimating parameters in this sigmoid maturation 
model and age (PCA, PNA) span in the analysis dataset is too narrow to characterize this 
maturation function appropriately.  
 
 
Study results compared to the literature 
 
 Compared to the published literature, our study presents substantial new findings 
in those extremely premature infants with GA < 25 weeks. A patient with GA < 25 weeks 
at birth has 18% higher allometrically weight adjusted CL and 57% higher weight 
adjusted V compared to one with GA > 25 weeks. These findings suggest that a relatively 
higher loading dose and higher maintenance dose based on body weight would benefit in 
treating AOP in premature infants with a GA < 25 weeks at birth. The relatively larger 
estimate for V is also consistent with estimates previously reported, where body weight 
normalized V for caffeine in premature neonates is larger than that in term neonates and 
adults  [101, 170]. Similar dose guidance was suggested by a controlled trial of caffeine 
citrate [101], when Erenberg et al. proposed a larger loading dose for less mature infants 
[101]. It is probably because there is proportionally more extracellular fluid in less 
mature infants, which leads to an age-dependent larger water/body weight ratio [171]. 
Caffeine, as a highly hydrophilic drug, would be expected to demonstrate an increased 
apparent volume of distribution under these conditions [26, 48]. It should be noted that a 
relatively large BSV (42.3%) on V was observed in the current study. This is likely due 
to the fact that most concentration data were collected at trough level during the TDM. 
Little information is available for the estimation of the absorption phase and peak 
concentrations, thus affecting the estimation for V. Another reason might be that water 
loss could be easily induced in premature neonates by environmental factors or clinical 
treatment, such as phototherapy, using a radiant warmer, or diuresis after caffeine 
treatment. As a result, a large between-subject variability and within-subject variability 
for V is often observed in this patient population.   
 
 The inclusion of a low GA factor in the CL model indicates that size and PCA 
alone cannot explain well the maturation progress of caffeine CL in extremely premature 
infants. PNA might play an important role in this process as well, where the postnatal 
development trajectory does not follow the intrauterine curve during the early postnatal 
life. A literature review also showed that most previous caffeine studies had detected a 
correlation between caffeine CL and PNA [152, 163, 166], PCA [160] or the combination 
of GA and PNA/PCA [151, 164]. In the studies by Falcão [151] and Lee [164], a 
corrected factor of GA ≤ 28 weeks was incorporated in the CL model, which found that 
PNA and weight had influence on CL. It has been reported by Pons et al [172] that the 
development of caffeine clearance after birth reached the plateau after 4-6 months, while 
a linear relationship was observed with gestational age and an exponential relationship 
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with postnatal age based on a study with a PNA range of 15~588 days. These findings are 
in agreement with our conclusion that together with size as a covariate, neither PNA nor 
PCA can solely characterize the maturation process of caffeine disposition in premature 
infants. That process might be described better by the combination of two types of age 
covariates, as implemented in our population model. In this way, the variable degree of 
maturation at birth and postnatal development are both accounted for in the CL model. 
This approach is also supported by a fluconazole population study in neonates and 
infants, where both GA and PNA were included in the CL model for fluconazole [173]. 
 
 
The ontogeny of caffeine elimination 
 
 Understanding the impact of the ontogeny of various elimination pathways on 
caffeine CL in premature infants remains incomplete. The total clearance of caffeine in 
premature neonates cannot be compared to term neonates and adults due to the immature 
liver and kidney functions at birth. In adults, caffeine is predominantly metabolized 
through cytochrome P450 (CYP) enzymes in the liver, and only approximately 2% of 
caffeine is excreted unchanged in urine [154, 174]. Of the human CYP enzymes 
investigated, demethylation through CYP1A2 plays the most important role [175-178]. 
Besides, CYP2E1, CYP3A4, N-acetyltransferase (NAT) and xanthine oxidase (XO) are 
all associated with caffeine’s biotransformation as well [166, 177, 179, 180].  
  
 In contrast to the adult situation, the renal pathway is thought to be compensatory 
in newborns and remains dominant for at least 3 months after birth. As indicated by a 
lack of expression of mRNA in human fetal liver, there is no significant enzymatic 
activity of CYP1A2 at birth [181]. Development is believed to be triggered by parturition 
[166, 181]. Previous studies support these mechanistic considerations by reporting that 
renal clearance plays an important role on caffeine’s elimination in neonates. 
Transplacentally acquired caffeine was found to be almost completely recovered in urine 
during the first 3 days after birth [182]. Additionally, 85% of the ingested dose was 
excreted unchanged in the urine during the first month of life [174]. However, renal 
clearance is less efficient than the CYP1A2-mediated metabolism pathway. Thus, the 
magnitude of the reduction of overall caffeine clearance in neonates could be as large as 
10-fold [170]. Adult clearance levels are reached in 4 to 6 months after birth [48, 130, 
160, 183], which reflects largely the metabolic activity of CYP1A2. 
 
 Nephrogenesis starts as early as 9 gestational weeks. Neonatal glomerular 
function shows a progression positively correlated to GA and PNA [31, 184, 185]. There 
are data to show that renal creatinine clearance (CrCL) was significantly lower in the low 
GA population (GA < 30 week), and steadily increased after birth [184, 186]. These 
findings about the development of renal elimination in neonates support the selection of 
GA and PCA as predictors for caffeine CL. Additionally, a considerably decreased 
glomerular filtration rate (GFR) was detected in neonates with perinatal asphyxia [187]. 
Although creatinine values were significantly higher in preterm babies than in term 
babies in the first week, they reached almost similar levels by the third week of life [188]. 
Such data indicate that a relatively faster development of renal function might be 
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associated with less mature neonates during the first 3 weeks of life, and thus may 
explain the effect of a low GA on caffeine CL. However, further studies are needed to 
clearly define the underlying mechanism of the development of caffeine elimination 
pathways. 
 
 
Dosing recommendations 
 
 An essential goal of the current dose-optimization simulation study was to find 
appropriate dosing regimens that can reach a trough level of 8-20 mg/L and a peak level 
≤ 40 mg/L for caffeine at steady state for the treatment of AOP in premature infants. 
Using trial simulation, four clinically relevant age categories were investigated using 
doses from 2 mg/kg to 14 mg/kg with a 12-hour or 24-hour dosing interval. Although 
patients received maintenance doses ranging from 3.1 to 28.6 mg/kg/day with either 12 or 
24 hours of dosing interval in the Model Building Dataset, a 24-hour-dosing interval was 
shown to be successful by the Monte Carlo simulations in the present study with respect 
to the proposed target concentrations in all simulated groups. This finding is also 
supported by the remarkably prolonged half-life of caffeine as reported previously in this 
population [153, 160]. However, a trend was noted that peak-trough fluctuation at steady 
state appeared to increase with the increase of patients’ body size and age. 
 
 Moreover, a large variability on the clinical responses of caffeine was observed in 
the original Model Building Dataset, where an empirical and adaptive dosing was used 
with the target trough concentrations between 20 and 30 mg/L. For example, 13 out of 88 
patients still had uncontrolled apnea and bradycardia episodes (1-26 episodes/patient) 
following at least 10 days of caffeine treatment. Meanwhile, 50 out of 88 patients had 
tachycardia (heart rate > 180 bpm) during the caffeine treatment period, where caffeine 
trough concentrations ranged from 7.9 to 42.7 mg/L. This variability is likely due in part 
to limitations of the empirical dosing strategy, where the therapeutic target is adjusted 
individually through TDM to achieve an effective clinical effect. However, the dose-
optimization simulations based on the developed PopPK model may provide more benefit 
while allowing clinicians to compare various dosing regimens and bridge the plasma 
caffeine levels with response at different PCAs and different body weights. Therefore, 
dose selecting for alternative targets would be more confirmatory than explorative. 
 
 A large variability was estimated for volume of distribution of caffeine from the 
final PopPK model. Since most concentration measurements were collected at trough 
level of each dosing interval and also at least 40 hours after the loading dose, information 
regarding the estimation of volume of distribution is thus limited. As a result, the 
optimization of the loading dose was not evaluated in this simulation analysis. 
 
 

Conclusion 
 
 In conclusion, a PopPK model of caffeine was developed for premature infants: 
body weight, PCA and information of gestational age were identified as important 
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predictors of variability of caffeine pharmacokinetics. Furthermore, we investigated the 
application of this PK knowledge to further facilitate the development of optimal dosing 
regimens through trial simulation. Various dosing regimens with a dosing interval of 12 
or 24 hours were evaluated to reach the predetermined therapeutic target with a trough 
level of 8-20 mg/L and a peak level ≤ 40 mg/L at steady state. A dosing interval of 24 
hours was shown to be successful with respect to the proposed target concentrations in all 
simulated groups. While the modeling and simulation approach is not intended to replace 
the TDM, it may provide valuable reference and information when dose adjustment 
becomes clinically urgent, especially for those patients with various maturational levels at 
the initiation of therapy. The successful use of modeling and simulation approaches in 
neonatal and infancy studies may reduce the number of invasive blood drawings required 
by therapeutic drug monitoring. Moreover, the posterior predictive check showed 
successful dose adjustment within an individual over time. A rational dosing regimen 
could be determined more rapidly based on the PopPK characteristics of caffeine rather 
than by empirical dosing. 
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CHAPTER 5.    SUMMARY 
 
 
 Currently, “off-label” use of drugs in pediatric populations remains an 
acknowledged problem across almost all categories of therapeutics throughout the world 
[2-9]. It has been reported that up to 62% of pediatric outpatient visits involve off-label or 
unlicensed medications [3]. Another report indicated that 70% of the medications in 
pediatric intensive care and 90% of the medications in neonatal intensive care were given 
in an off-label manner [10]. Off-label prescribing is more common in younger pediatric 
populations compared to the older children, especially in premature neonates–the primary 
group receiving intensive care [3, 4], and dosing regimens for most drugs used in 
neonates are usually empirical. Limited clinical data is considered the major reason for 
the “off-label” use of drugs in pediatric populations, due to the complexity of pediatric 
studies as well as scientific, logistical and ethical concerns. Major pharmacokinetic 
challenges to assuring proper pharmacotherapy in premature neonates and infants are: 
limited volume and frequency of blood sample collections, rapid growth and continuous 
developmental changes and empirical dosing due to the lack of pharmacokinetic 
information. My dissertation research focused on several approaches to overcome these 
unique challenges in premature neonates and infants. One of them was to develop an 
accurate and sensitive LC-MS/MS assay, which can simultaneously quantitate multiple 
drugs frequently used in pediatric pharmacotherapy using a small volume of plasma. 
Additionally, PopPK modeling and simulation for sample size estimation and appropriate 
study design and dosing regimen were investigated to improve drug development and 
pharmacotherapy in pediatric populations. 
 
 LC-MS/MS is a standard bioanalytical methodology for drug research due to its 
robustness and high sensitivity, which allows for reliable quantification even within the 
confines of small sample volumes in pediatric studies [104]. The first objective of my 
research was to develop an LC-MS/MS assay for the simultaneous determination of 
acetaminophen, caffeine, phenytoin, ranitidine and theophylline using small volume 
human plasma specimens for pharmacokinetic evaluation. These five drugs were selected 
as they are all currently widely used in the pharmacotherapy of premature and term 
neonates [98-103], with only limited pharmacokinetic information available. Due to the 
limitations in sample volume, developing an assay that can simultaneously determine 
multiple drugs allows for gaining maximal information from pharmacokinetic studies 
while minimizing the burden on pediatric patients. An accurate, sensitive, and reliable 
LC-MS/MS method was developed and validated using small volume of 50 µL human 
plasma to quantitate the selected five drugs simultaneously with mean accuracy ranging 
from 87.5% to 115.0%, and intra-day and inter-day precision ranging from 2.8% to 
11.8% and from 4.5% to 13.5%, respectively. This assay quantifies a range of 12.2 to 
25,000 ng/mL for acetaminophen, phenytoin and ranitidine, a range of 24.4 to 25,000 
ng/mL for theophylline, and a range of 48.8 to 25,000 ng/mL for caffeine. These ranges 
cover each drug’s therapeutically used concentrations in the neonatal age group. A 
sample dilution procedure was also evaluated, and the results indicated that the assay’s 
intra-batch accuracy and precision were not affected by the 1-to-2 dilution. The effects of 
hemolysis, lipemia and hyperbilirubinemia were subsequently evaluated, and no 
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interference in the analysis was noted when these factors existed separately or combined. 
Additionally, no significant matrix effect was observed for the developed bioanalytical 
assay. 
 
 Based on the fact that clinical research in the neonatal population can only be 
performed within the context of therapeutically necessary interventions, an opportunistic 
sampling approach was proposed for PK studies—that is utilizing the leftover of blood 
samples taken for routine clinical care in PK studies. This design is thought to be ethical 
since no extra invasive blood draw will be imposed on the patients. Successful 
application of population-based M&S can be used to determine the appropriate number of 
subjects needed in pediatric studies, thus resulting in fewer patients exposed to the 
investigational drugs with an adequately powered study. The effect of sample size on the 
robustness of population pharmacokinetic parameter estimates and covariate detection in 
the observational study design in premature neonates was evaluated using a full model-
based simulation approach with theophylline as the model drug. Simulated datasets for 
each sample size (9-200 subjects per study) with a mixed and unbalanced sampling 
design were first generated with the incorporation of changes in birth weight, body 
weight and PNA. The median PopPK parameters for theophylline estimated from the 
simulated datasets were generally in close agreement with those of the originating model 
across all tested sample sizes; while the accuracy, precision and power of parameter 
estimation benefit from increases in the number of study subjects. The power of the study 
was deeply influenced by the sample size, parameter of interest and the selected precision 
level. Furthermore, the power to detect the potential covariate effect was investigated at 
three significance levels. It was found if the desired bias in parameter estimations in 
terms of %MPE was ≤ 15%, and ≤ 25% and ≤ 50% were accepted as being precise for 
fixed effect and variance parameter, respectively, a sample size of 40 subjects would be 
sufficient. At a sample size of 40 subjects, the power to detect the covariate effect was 
greater than 80% at a significance level of P = 0.01. Overall, this proposed approach can 
also be applied to evaluate the impact of other design factors which may influence the 
required number of subjects in PK studies in premature infants, such as different 
sampling design (sparse or dense sampling), allocation of sampling times, estimation 
methods, and magnitude of variability. It may also prove valuable in studying other drugs 
of interest if appropriate prior knowledge is available. 
   
 There is currently limited PK data on caffeine in premature neonates. We 
developed a PopPK model of caffeine in premature neonates and identified potential 
sources of variability of PK behavior for caffeine. We subsequently investigated the 
application of this PK knowledge to further facilitate the development of optimal dosing 
regimens through simulation, particularly to correlate steady state concentrations with 
different dosing regimens in various age/body size groups. In the present study, a one-
compartment model was chosen to describe the pharmacokinetic characteristics of 
caffeine in premature infants, covering a gestational range of 23 to 31 weeks with an age 
of up to 116 days. Body weight, PCA and a low gestational age < 25 weeks were found 
to be important predictors explaining the between-subject variability of caffeine 
pharmacokinetics in premature infants receiving caffeine treatment. Particularly, the BSV 
of CL decreased by 68% (from 28% to 8.9%) with the addition of body weight, PCA and 
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a low GA factor on CL. The typical patient in the studied premature neonate population 
(WT of 1.5 kg, PCA of 32 weeks and with a GA > 25 weeks) was estimated to have a CL 
of 0.0164 L/hr and a V of 0.94 L. Finally, we evaluated twelve dose levels from 2-14 
mg/kg/day with dosing intervals of 12 or 24 hours in premature infants using trial 
simulation. Based on the literature, the therapeutic target was determined to be a trough 
level of 8-20 mg/L and a peak level ≤ 40 mg/L at steady state. A dosing interval of 24 
hours was shown to be successful for the proposed target concentrations in all simulated 
groups. With the proposed dosing regimens, the predetermined target was well attained 
and the simulated median trough plasma concentrations were between 8 and 20 mg/L 
throughout the treatment period. The dose-optimization simulations based on the 
developed PopPK model may provide improved therapeutic benefit while allowing 
clinicians to compare various dosing regimens and bridge the plasma caffeine levels with 
response at different PCAs and different body weights. 
 
 In summary, the general theme of my dissertation research was to investigate 
different approaches to overcome the unique pharmacokinetic challenges in clinical 
studies with premature neonates and infants. A rapid, accurate, sensitive, and reliable  
LC-MS/MS method to quantify five drugs frequently used in the pharmacotherapy of 
premature infants simultaneously was developed using a small volume of plasma. This 
new bioanalytical assay could facilitate an efficient use of limited blood samples in 
premature infants in the future. In addition, an approach was developed using population 
pharmacokinetic simulations to determine sample size for PopPK studies in premature 
neonates with the consideration of changes in birth weight, body weight and PNA. Lastly, 
a PopPK model was developed for caffeine in premature infants with the statistically 
significant relationships of clearance with weight, clearance with PCA, clearance with 
low GA factor, volume of distribution with weight and volume of distribution with low 
GA factor. Proper dosing regimens can be determined rapidly to reach the therapeutic 
target concentrations based on the PopPK characteristics of caffeine. Together with the 
LC-MS/MS bioanalytical assay, population-based modeling and simulation are highly 
useful in supporting clinical pharmacokinetic studies in premature neonates and infants. 
 
 With the legislative incentives and requirements, population-based modeling and 
simulation approaches as well as sensitive analytical assays allowing for pharmacokinetic 
sample quantification from very small volume blood samples, it is hoped that further 
information on the influence of developmental changes on pediatric pharmacokinetics 
will be gathered to improve pediatric drug labeling so that rationale and scientifically 
based dosing strategies can be developed for a safe and effective pharmacotherapy in 
pediatric patients. 
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APPENDIX A.    CHAPTER 4 SUPPLEMENTAL FIGURES 
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Figure A-1. Visual predictive check for the final caffeine population 
pharmacokinetic model 
 
The red solid line and grey dotted lines indicate the median and 80% confidence interval 
of predicted concentrations determined from 500 Monte Carlo simulations with the Final 
Model. Open circles indicate observed caffeine concentrations in the model building 
dataset. 
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Figure A-2. Visual predictive check for the final caffeine population 
pharmacokinetic model 
 
The red solid line and grey dotted lines indicate the median and 70% confidence interval 
of predicted concentrations determined from 500 Monte Carlo simulations with the Final 
Model. Open circles indicate observed caffeine concentrations in the model building 
dataset. 
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Figure A-3. Visual predictive check for the final caffeine population 
pharmacokinetic model  
 
The red solid line and grey dotted lines indicate the median and 60% confidence interval 
of predicted concentrations determined from 500 Monte Carlo simulations with the Final 
Model. Open circles indicate observed caffeine concentrations in the model building 
dataset. 
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Figure A-4. Visual predictive check for the final caffeine population 
pharmacokinetic model  
 
The red solid line and grey dotted lines indicate the median and 50% confidence interval 
of predicted concentrations determined from 500 Monte Carlo simulations with the Final 
Model. Open circles indicate observed caffeine concentrations in the model building 
dataset. 
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